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Abstract

We develop a new empirical framework to provide microeconomic evidence on the
mechanisms underlying macroeconomic models with financial frictions and assess the self-
financing channel. Using administrative panel data, we estimate firm-level productivity
and its effect on firms’ decisions. Our framework is robust to financial frictions, whereas
standard methods used to estimate productivity dynamics are biased. The productivity
process is largely non-linear, with larger persistence for more productive firms, while per-
sistence can change significantly in the face of extreme events. We uncover a distribution
of investment and wealth accumulation propensities in response to productivity shocks.
These propensities are heterogeneous in the stock of wealth and productivity level: (i)
investment propensities are larger for high-productivity firms and high-wealth firms, and
(ii) wealth accumulation propensities are larger for high-productivity firms with low levels
of wealth. We provide evidence of collateral-based and earning-based constraints. Our
estimates support the existence of self-financing but show that its impact is limited.
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1 Introduction

Over the last decade, a rich literature has used macro models with heterogeneous agents to
analyze the importance of financial frictions at the firm level for aggregate productivity, capital,
and income [see Buera et al., 2015]. An important insight provided by these models is that the
quantitative effects of financial frictions are driven by the joint distribution of firm wealth and
productivity and how this distribution evolves over time. If firm productivity and wealth are
not well aligned, financial frictions can generate misallocation of production factors across firms,
with potentially important macro implications. Another crucial insight from these models is
that firms can overcome financial frictions over time by accumulating wealth in response to
persistent productivity shocks. This endogenous “self-financing channel” implies that wealth
and productivity will align over time and has the potential to mitigate the aggregate adverse
effects of financial frictions.’

However, a detailed analysis, using micro-data, of the firm-level empirical predictions and
mechanisms that underlie these models is currently absent from the literature. This is a rel-
evant issue, as there is scant direct evidence on the individual decisions that lie at the center
of the forces driving the self-financing channel and its macroeconomic implications.” In partic-
ular, micro-level features like the characteristics of the firm-level productivity process and the
individual policy functions for investment and wealth accumulation govern the evolution of the
joint distribution of productivity and wealth and the actual relevance of self-financing on an
aggregate scale. For example, the persistence of firm-level productivity over time is crucial for
the strength of self-financing [Moll, 2014]. If productivity is very persistent, productive firms
with low levels of wealth will have larger incentives to build up wealth faster and increase their
investment. More generally, micro-level evidence on the actual extent of self-financing for differ-
ent types of firms can, if needed, guide targeted policies that can alleviate financial constraints.
This paper attempts to bridge up this gap, bringing together the insights and lessons from the
quantitative macro models with financial frictions with what we can learn from evidence using
detailed firm-level data on production, investment, and savings decisions.

We present a novel methodology to estimate firm-level production functions in the face of
financial constraints and use it to characterize the nature of the firm productivity process and
its effect on the firm’s decisions. To the best of our knowledge, we are the first paper to esti-
mate, using micro-data, the relevant policy functions for investment and wealth accumulation
decisions under financial fictions derived from macro models. We use these functions to empir-
ically document the response of investment and wealth accumulation to productivity shocks at
the micro level, study how these responses vary along the wealth and productivity distribution
and explore the strength of the self-financing mechanism in reducing misallocation.

To do so, we take advantage of a rich data set of manufacturing firms obtained from a census
of administrative records of formal firms in Chile from 2006 to 2016. Besides including data on
inputs and output at the firm level, the database provides information on the balance sheet of

!Quantitative models, in Banerjee and Moll [2010], and Midrigan and Xu [2014], suggest that self-financing
is strong enough to rapidly undo the impact of financial frictions on misallocation. These findings have lent
support to the idea that the macro implications of financial frictions are less significant than thought earlier.

2As emphasized by Buera et al. [2021] “macro models have tended to rely on strong structural assumptions,
e.g., assumptions on functional forms and distributions of unobservables, and on somewhat stylized calibration
strategies, and thus economists often view it as disconnected from micro empirical research”.



firms, allowing us to characterize wealth and directly analyze the role of financial frictions. The
data set has the advantage of including a panel of firms of different sizes and characteristics,
mostly private, in the context of an emerging economy. As we can follow individual firms over
time, we can directly observe their wealth accumulation and investment decisions and relate
them to the evolution of the estimated productivity process. We believe this data set is an ideal
laboratory to study the firm-level dynamics that lie at the foundations of the macroeconomic
models used in the literature.

We provide four key findings First, as opposed to the standard linear AR(1) productiv-
ity process with constant persistence embedded in most quantitative macro models, we find a
highly nonlinear productivity process where the persistence of productivity shocks depends on
the previous level of productivity and the magnitude and the sign of new shocks. Typically,
persistence is increasing in productivity, with persistence being almost one for the most produc-
tive firms and as low as 0.75 for low-productivity firms. This has important implications for the
strength of self-financing, as high persistence provides stronger incentives for highly productive
firms to accumulate wealth. However, large productivity shocks can change the persistence
of the productivity process. For example, extremely negative shocks to an ex-ante, very pro-
ductive firm can reduce productivity persistence to 0.7, whereas extreme positive shocks to a
low-productivity firm reduce persistence to 0.65. This means that large, infrequent shocks not
only have a direct effect on impact but can also alter the existing relationship between past and
current productivity. Second, we find heterogeneous patterns in the response of firm investment
and wealth accumulation to productivity shocks. We are the first paper to document a nonlin-
ear relationship between investment and productivity at the firm level, with larger responses
in investment to productivity shocks at higher levels of previous productivity, regardless of
the level of wealth. This result is consistent with the fact that more productive firms display
higher productivity persistence. Also, consistent with models of collateral constraints, the in-
vestment reaction to positive productivity shocks is increasing in wealth for all productivity
levels. For instance, the investment elasticity to a productivity shock goes from 0.05 to 0.10
for low-productivity firms, from 0.15 to 0.3 for medium-productivity firms, and from 0.4 to
0.6 for high-productivity firms when we move along the wealth distribution. Moreover, our
results also lend support to the existence of earning-based constraints ([as in Lian and Ma,
2020, Drechsel, 2022]), as even the investment of productive firms located at the lower end of
the wealth distribution strongly react to a positive productivity shock (the elasticity is close
to 0.4 for a high-productivity firm at the lower end of the wealth distribution as opposed to
0.05 for a low-productivity firm with the same low wealth). Third, we are the first paper to
document that the effect of productivity on wealth accumulation is heterogeneous in wealth and
productivity in a way that is consistent with the notion of self-financing. In very productive,
low-wealth firms, the transmission of persistent income shocks to savings is almost one-to-one.
However, this response weakens significantly as we move upwards along the wealth distribution
- reaching below 0.5 for highly productive, wealthy firms- or downwards along the productivity
distribution - being below 0.2 for wealthy firms with low productivity-. Fourth, we use our
estimated empirical model to compute the speed of convergence of the marginal product of
capital (MPK) between firms with the same productivity but different levels of initial wealth.
While our results show that convergence in MPK between firms does occur, it is very slow,



as differences in MPK persist for almost four decades, even for very productive firms. This
suggests that the self-financing channel might be less strong than suggested elsewhere in the
literature [e.g. Banerjee and Moll, 2010, Midrigan and Xu, 2014].

Our approach Our empirical analysis is guided by the economic models that study the self-
financing channel [e.g. Buera and Shin, 2011, Moll, 2014, Midrigan and Xu, 2014]. However,
an important aspect of our tractable econometric framework is that it uncovers the firms’
productivity process and its effects on firms’ investment and wealth accumulation decisions
without relying on a structural estimation. In contrast to fully-specified structural approaches,
which require the specification of particular functional forms for preferences, financial frictions,
and especially the distribution of productivity, we adopt a non-parametric approach where we
recover productivity from the firm production function and estimate nonlinear firm’s policy rules
that are compatible with a large class of heterogeneous-agent models with financial frictions.
This setup provides us with a great degree of flexibility, allowing us to incorporate different
forms of financial frictions, including both collateral and earnings-based constraints, and to
study non-linear responses to productivity shocks. In line with the predictions of theoretical
models, the marginal effect of productivity is allowed to be heterogeneous across firms and
contingent on the level of wealth and productivity. Therefore, we can characterize the complete
distribution of micro-level investments and wealth accumulation propensities in response to
productivity shocks. In that respect, our empirical framework shares the spirit of the empirical
consumption-household income framework [e.g. Blundell et al., 2008, Kaplan and Violante,
2010, Arellano et al., 2017, Straub, 2019], which exploits panel data to estimate the degrees to
which consumption decisions respond to unobserved household income shocks, but applied to
a firm setup. A crucial econometric difference between these frameworks lies in the estimation
of the net income process. In the household framework, income shocks and their effect on
consumption are extracted directly from the household income data after removing demographic
characteristics that are assumed to be orthogonal to the income shocks. By contrast, to estimate
the unobserved firm productivity process and its effect on investment and savings, we need to
estimate the production function parameters where the regressors are endogenous and correlated
with unobserved productivity.

The first step of our analysis builds on previous literature that estimates production func-
tions and productivity at the firm level. This literature relies on a proxy variable approach to
recover productivity using the firm’s input decisions [see Ackerberg et al., 2015, for a review].
For instance, Olley and Pakes [1996] recover productivity by inverting an investment demand
function, whereas Levinsohn and Petrin [2003] invert the firm demand function for intermedi-
ate inputs. We extend this estimation method to allow for financial frictions, as we show that,
otherwise, proxy methods deliver biased estimates of the production function and the produc-
tivity process. Intuitively, financial frictions generate differences in input demands for equally
productive firms that the proxy variable method misinterprets as differences in unobserved pro-
ductivity. Additionally, the proxy method is not well-suited to identify and estimate flexible
empirical policy functions, as it does not allow for unobservables besides productivity in the
policy functions. This is an empirically restrictive assumption since it rules out the possibility
of idiosyncratic shocks and measurement error.

Combining the insights of the self-financing channel with recent developments in nonlinear



panel data models with latent variables [Hu and Schennach, 2008, Hu and Shum, 2012, Arellano
and Bonhomme, 2017, Arellano et al., 2017], we propose a sequential identification scheme to
nonparametrically identify the production function, the productivity process, and the policy
functions. From an instrumental variable perspective, both policy functions can be thought of
as noisy measures of unobserved productivity. If conditional independence holds, such that the
production function and both policy functions are independent conditional on productivity and
observed state variables, the wealth accumulation policy provides an external instrument for
investment (the proxy variable with noise) in the production function regression. Intuitively,
due to self-financing, a positive co-movement between investment and wealth accumulation
decisions is related to changes in productivity that can be used to identify the production
function. Once the production function parameters are identified, the productivity process is
identified from the dynamic dependence structure of the firm net income process, and the policy
rules are identified using non-parametric instrumental variables arguments given the exclusion
restrictions provided by our dynamic model. In that sense, we are the first paper to provide the
conditions for the identification of the empirical functions underlying the quantitative macro
models with financial frictions.

An important advantage of our approach (compared to a full structural estimation) is econo-
metric transparency in the sense of Andrews et al. [2017], Andrews et al. [2020] and Bonhomme
[2020]. First, we formally discuss identification and clearly show how the conditional indepen-
dence assumption and the Markovian assumption—justified by the economic insights of struc-
tural models with financial frictions—enable us to construct dynamic restrictions that are used
to identify the nonlinear policy functions, despite the presence of latent productivity. Second,
our IV estimator is transparent, as it directly connects our estimates to the relevant moments
and variation in the data that “drive” the estimator (see the discussion in Andrews et al.
[2020]). Although the empirical model cannot provide direct policy counterfactuals, its esti-
mated parameters may be used directly or indirectly to calibrate structural models that are
able to do so. Our production function and productivity estimates can be used to parametrize
the firm’s production function and the productivity process directly in a structural model, while
our empirical policy rules can be used as matching targets for other key parameters related to
preferences, adjustment costs to capital and financial constraints as in Catherine et al. [2018].

Our framework also uncovers new empirical results on the estimates of the firm production
function and productivity process as we find significant differences once we control for financial
frictions. We show that applying standard methods without controlling for financial frictions
underestimates the marginal effect of capital (the constrained input) in the production function
due to the negative correlation between capital and financial frictions and underestimates the
productivity of constrained firms as they show larger investment gaps with respect to their
optimal levels. As a result of the underestimation of the capital parameter and productivity,
those methods overestimate the labor parameter to fit the production function.

Related literature Our paper makes contributions to different streams in the literature. Our
initial motivation is the macro-finance literature that studies the aggregate effects of financial
frictions. We are closer to the set of papers focusing on collateral constraints and self-financing
le.g. Banerjee and Moll, 2010, Buera and Shin, 2011, Buera et al., 2011, Song et al., 2011,
Buera and Shin, 2013b, Caggese and Cunat, 2013, Moll, 2014, Midrigan and Xu, 2014], as we



guide our empirical specification by the general implications of these models, i.e., self-financing
by incumbents undoes the effect of financial frictions and allows firms to invest closer to the
optimal level. As mentioned, our main contribution is to provide novel direct evidence and
an identification strategy on firms’ wealth accumulation and investment decisions, which in
these papers are an endogenous outcome of calibrated structural models built under different
assumptions. As suggested by Hopenhayn [2014], this may be the source of the disparity of
magnitudes reported for the aggregate effects of financial frictions. Our estimations may help
to discipline these models and provide further insights into their underlying mechanisms. We
provide estimates of key elasticities and unlike these papers, we exploit microeconomic data not
only on real variables but also on financial variables. Ours is the first paper to provide direct,
firm-level evidence of the self-financing channel.

This paper also connects to two strands of research in corporate finance. One area of liter-
ature, starting with Fazzari et al. [1987], tries to identify financially constrained firms through
the sensitivity of firms’ investment to cash flows beyond profitability. Typically, profitability
is captured by Tobin’s @) or other observable characteristics of a firm. A second related area
of literature discusses the determinants of firms’ cash holding decisions and relates them to
firm characteristics such as growth opportunities and risk management.® In our framework,
the investment and wealth accumulation policy functions are two of our outcomes, and we are
able to identify unobservable productivity not only to control for profitability but also to esti-
mate non-linear and interaction effects with our measure of collateral. Furthermore, since we
follow the structural macro models, we focus on net wealth instead of cash flows. Our results
show that net wealth is a significant determinant of investment and that wealth accumulation
decisions are affected by the firm’s productivity process.

The paper also connects with the empirical literature that estimates production functions
at the firm level using the proxy variable approach [Olley and Pakes, 1996, Levinsohn and
Petrin, 2003, Ackerberg et al., 2015, Doraszelski and Jaumandreu, 2013, 2018, Gandhi et al.,
2020, Shenoy, 2020]. Our paper differs from these papers in several aspects. First, our paper
is the first paper to study theoretically and empirically the biases that appear when the proxy
method is used to estimate the production function under the environment of macro models
with collateral constraints. Second, our paper uses the insights and economic mechanisms
presented in those models to propose a novel strategy that is robust to financial frictions. In
this sense, our paper is the first paper that uses the self-financing channel to identify the firm
productivity process and the firm production function. We allow for more flexible policy rules,
including transitory shocks, unlike the proxy variable approach. Finally, a key difference is the
identification and estimation of the policy functions.

The rest of the paper is organized as follows. Section 2 presents a model of firm dynamics
with collateral constraints in order to motivate the ingredients of the empirical model and shed
light on the biases of the proxy variable approach. Section 3 introduces the empirical model
and its assumptions. Section 4 establishes the identification of the model. Section 5 describes
the estimation methods. Section 6 describes the data and presents the main empirical results.
Section 7 concludes.

3See, for example, Opler et al. [1999], and Almeida et al. [2004]



2 A Simple Model with Financial Frictions

Our starting point is a stylized structural model akin to the ones used in the macro literature
to study and quantify the effects of financial frictions and the power of self-financing [see Buera
et al., 2015, for a detailed analysis]. The model motivates the ingredients of the empirical
policy rules we take to the data, provides the mechanisms and assumptions used to identify
the empirical model, and illustrates the nature of the biases incurred by the proxy variable
approach under financial constraints,

Consider a firm maximization problem where a price-taking incumbent firm with initial
wealth A;;, capital K;; and productivity Z;; solves the following dynamic problem to maximize
the discounted value of distributed profits D;; choosing labor L;, investment [;; and next period
wealth Ait—l—l:

V(Ait, Kit, Zir) = . max Dyt + BE [V (Aits1, Kit1, Zies1)| Zit)
it+1y4ityLeit
s.t. D+ g(Ais1) = Yu—WLy— (r+90)Ky+ (14 1r)As,

Yit = ZitngLiﬁtl
Ky = L+ (1—90)K.

where Y}, is the value added produced by firm 7. Investment, which determines the next period’s
capital, is decided before the firm observes its next period’s productivity, while labor is decided
contemporaneously with productivity.® The function g(-) is assumed to be convex, which given
the use of linear preferences, rules out corner solutions.” The firm discounts future flows at 3,
capital depreciates at rate d, and the firm pays interest rate r for its debt, implicitly defined by
Ky — Ay

As is standard in the literature, the log of productivity z;; follows a Markovian process

zit = ¢ (Zit—1) + Nit, (1)

where ¢ (zi_1) = F [zi | zis—1] 18 a non-parametric function of z;_; and n; is a shock.

Financial Constraints Following Buera et al. [2015] we consider the following specification
Kiry1 < 6(Ai, Zit) (2)

Equation 2 implies that debt is limited by the repayment capacity of the firm through a
combination of its productivity z;; and its current wealth a;;. This simple reduced form captures
the idea that financial friction depends on the profitability of the firm and its financial status.

4This assumption implies that it takes a full period for new capital to be ordered, delivered, and installed.
Some papers assume capital is chosen within the period to reduce the state space considerably [e.g. Midrigan
and Xu, 2014].

5 Assuming linear preferences is not needed in our empirical framework, but simplifies the illustrative analysis
in this section. Including the convex function g introduces an incentive to smooth assets over time, ruling out
corner solutions in which firms retain either all or none of their earnings. This specification combines ease of
analysis with the general qualitative implications of models that introduce concavity in preferences.



The first term in 2 is known as asset-based collateral constraints, as net worth determines the
part of the balance sheet that is owned by the firm and can be pledged as collateral. The
second term in 2 represents earning-based constraints, as persistent productivity determines
the flow of current and future cash flows, which are the main factor in earning-covenants and
earning-based lending (see Lian and Ma [2020]). Lian and Ma [2020] and Ivashina et al. [2022]
provide substantial evidence that both type of financial constraints are prevalent in developed
and developing countries, whereas Aguirre [2017], Brooks and Dovis [2020], Drechsel [2022] and
di Giovanni et al. [2022] show that both constraints are quantitatively important.

Optimality Conditions The FOC with respect to investment can be written as:

1 By _
ChB(Zits1 | Zat) TP (I + (1 = 8)K) 70" = B(r +8) + pu( A, Zu), (3)

where C}, is a constant. The last term on the right-hand side is the wedge caused by financial
frictions, and is the multiplier of the collateral constraint (2), which is decreasing in A;. This
wedge implies that MPKs will not equalize across firms, so that the equilibrium allocation of
capital, which depends on the current distribution of A;; and Zj;, is not efficient. Equation
(3) generates investment policy function (in logs) that depends nonlinearly on wealth and
productivity.

Lit = h(Zm km ait) (4)

Finally, in an environment with collateral constraints, the firm must decide on wealth accu-
mulation, which will be crucial to finance future investments. The FOC, in this case, is given
by:

9 (A1) = B+ 7+ By [kap(Aiir, Zig1)]) (5)

Hence, even if the constraint does not bind today, wealth accumulation provides a benefit if the
constraint is expected to bind in the future. When the constraint binds, an additional dollar of
retained earnings allows the firm to increase investment in x4 dollars. The marginal benefit of
wealth is then the expected marginal product of capital net of borrowing costs, the value of the
multiplier. Since productivity is persistent, higher productivity today increases the expected
marginal product of future capital, generating a positive correlation between productivity and
wealth accumulation. As emphasized by Moll [2014] the higher the persistence of productivity
the higher the firm’s incentives to accumulate wealth. Similarly to investment, we can define
this general relationship as the wealth accumulation policy function

Qit+1 = Q(Zz‘t, Eit, ait) (6)

The intensity of financial frictions and the strength of self-financing are reflected in the responses
of firm investment and wealth accumulation to persistent productivity shocks and how these
responses depend on the amount of available collateral.

This simple setup illustrates the goal of this paper: to flexibly characterize, using micro-
data, the firm productivity process in (1) without parametrizing its distribution, and document
its impact on firm decisions estimating the firm policy functions in (4) and (6) without relying
on approximations and distributional assumptions.



Biases in proxy variable estimators in the presence of financial frictions. In the
paper we follow the industrial organization literature and recover firm productivity without
relying on distributional assumptions by estimating the firm production function. However,
the model described above provides insights into the biases that appear when estimating these
objects using standard empirical methods that do not account for financial frictions, and how
these biases can distort the interpretation of the production function and the underlying pro-
ductivity process. We illustrate our general argument in the context of the influential paper
by Olley and Pakes [1996], henceforth OP. However, the same logic applies to Levinsohn and
Petrin [2003] as long as financial frictions affect the demand for materials as in Mendoza and
Yue [2012].° These biases problematic, as consistent estimation of the production function and
the productivity process is important given the crucial role played by these objects in structural
macro models that quantitatively study the self-financing channel.
Consider the log of the value-added production function described above:

Yit = Bilix + Brkie + zie + €at, (7)

where €;; is measurement error in value added.” The challenge in the estimation of 3; and f3;
is that z; is an unobservable variable for the econometrician which is potentially correlated
with the regressors k;; and [, creating an endogeneity problem in the OLS regression of y;;
on k; and l;;. The OP approach relies on using the investment policy function as an auxiliary
equation to obtain information on z;. In the absence of collateral constraints, by controlling
for investment in the production function, OP can eliminate the endogeneity problem and get
consistent estimates of 3; and (. Intuitively, the OP method interprets observed differences in
investment between firms in the data as differences in unobserved productivity between those
firms.

However, in the model with financial frictions described above, the investment function
arising from (3) does not only depend on productivity and initial capital, but also on net worth
and its influence on the firms access to credit. Therefore, under borrowing constraints, equally
productive firms with different levels of wealth might have different levels of investment, capital,
and output. In consequence, if the implied heterogeneity in output is driven by heterogeneity in
capital due to differences in financial frictions across firms, the OP approach will wrongly assign
such dispersion to productivity, as it will misinterpret differences in investment as solely coming
from differences in productivity. As a result, the OP productivity proxy captures an important
part of the effect of capital on output, underestimating the true marginal impact of capital, and
generating a downward bias en in the estimated coefficient for capital . Conversely, as long as
financial frictions are relatively less severe in the labor market, the labor coefficient is upwardly
biased. OP interprets a financially constrained firm with low investment as a low-productivity
firm that hires “too many” workers and produces “too much” output relative to its proxy-OP
productivity. Hence, it will assign a large role to labor in determining output, overestimating the
labor elasticity. Furthermore, these biases in the estimates of factor elasticities can translate into

6We provide a detailed explanation of the biases in Appendix A.1.

"We focus on a model with perfect competition where output prices are homogeneous across firms as in Olley
and Pakes [1996], Levinsohn and Petrin [2003], Ackerberg et al. [2015], and Gandhi et al. [2020]. For production
function estimation with monopolist competition and heterogeneous markups, see De Loecker [2011a,b] and
Bond et al. [2021].



significant differences in the measure of returns to scale. Additionally, OP will underestimate
the productivity of financially constrained firms, as they have larger investment gaps with
respect to their optimal levels. As a consequence, OP will deliver biased estimates of the
productivity distribution across firms. Our empirical exercises illustrate these biases, and how
our methodology can correct them, both with actual firm-level data as well from simulated data
using a model with financial frictions.

3 General Empirical Framework

This section discusses the empirical model we take to the data and its stochastic assumptions.
The model consists of the production function in (7) and the empirical counterparts of the
productivity process in (1) and the policy functions in (4) and (6).%

As our aim is to recover the productivity distribution from the data, we consider a very
flexible specification for the productivity process using a quantile model:

Zit = Q (thly 77it) (8)

with (9 | z—1) uniform distributed. This quantile model is a direct non-parametric model
for the distribution of productivity. Compared to the standard linear AR(1) traditionally used
in the literature, it allows for nonlinear persistence with two main properties. First, for a given
shock 7;; the relationship between z;; and z;; 1 depends on z;;_;. Therefore, the persistence of
productivity after a given innovation can vary across firms that start at different productivity
levels. Second, for a given z;;_; the relationship between z;; and z;_; depends on n;. This
implies that unusually large (positive or negative) shocks can change the relationship between
current and past productivity and cancel the cumulative effects of past shocks. This modeling
approach has been introduced by Arellano et al. [2017] to model persistent income shocks to
households. We are the first paper that introduces this model to estimate productivity and
production functions at the firm level. As it is standard in the literature, shocks 7;.; and
gy are not part of the firm’s information set when making decisions at . The assumptions
about the stochastic processes underlying both shocks are explained in detail at the end of this
section. Following the model in Section 2, capital k;; is a dynamic but predetermined input,
decided in t — 1 when the firm chose ;;_1, while labor [; is a flexible input. The specification
of the empirical policy rules follows the stylized model discussed in the previous section, but
each policy function is augmented by a stochastic shock:

ig = Iy (Zita Eit, ait, Uz‘t) ) (9)

Qit+1 = Ge+1 (Zita it Kit s wit+1) . (10)

where h; and ¢;,1 are the nonlinear reduced-form policy rules of investment and wealth that
can be derived in a firm-dynamics model with financial frictions as the one discussed in Section

8We consider a Cobb-Douglas production function since it is the specification used in the structural models
that study the self-financing channel. Our approach can accommodate more flexible production functions as
long as productivity is Hicks-neutral.



2. The terms v;; and w;41 capture other unobserved factors besides z;; that affect the evolution
of investment and wealth. For example, in the context of the model studied in Section 2,
shocks to collateral constraints could affect the investment policy function. It may well be
the case that firms face temporary idiosyncratic shocks that affect the relationship between
debt, productivity, and collateral (i.e., k(Zy, Ay, vi)). In the case of the wealth accumulation
policy function, stochastic shocks can come from unexpected fluctuations in the valuation of
firms’ financial portfolios or fixed assets. If these occur in the interim between the distribution
of dividends (when equation 5 is solved) and the moment in which the firm uses wealth as
collateral to borrow (when equation 4 is solved), these shocks they will appear as unplanned
changes in the valuation of collateral.” More generally, the inclusion of stochastic shocks can
also bridge the transition from the insights of the stylized model in Section 2 to an empirical
model that deals with actual micro-data, and the presence of issues such as measurement error
that can emerge from the use and combination of different datasets.

We also assume that h; and g1 are monotonic in vy and w1, respectively. The specifica-
tion in (9) nests a number of nonlinear empirical investment functions studied in the literature
[e.g. Olley and Pakes, 1996, Cooper and Haltiwanger, 2006, Gala et al., 2020]. The two major
innovations of our framework are (i) the inclusion of wealth a as an additional state variable
in (9), to control for the existence of collateral constraints and (ii) the explicit modeling of
wealth dynamics in (10) and its relationship with productivity (the self-financing channel). An
additional important difference to Gala et al. [2020] and Cooper and Haltiwanger [2006] is that
we explicitly include z; as a state variable, whereas these papers replace z; for value-added.

The nonlinear functions h; and g;11 allow for heterogeneous effects of productivity shocks
on investment and wealth accumulation, depending on the collateral and productivity of the
firm. As a result, our main objects of interest are the following average derivative effects with
respect to zj:

ah i)kia ity Ui
(I)?t — @h (a’itakityzit) _ Evit |: t(Zt ty At 'Ut):| (11)

0z

0z (12)

where the expectations are taken with respect to the idiosyncratic shocks in the policy
functions. Therefore, ® and @Y, measure the average propensities of investment and wealth
accumulation in response to productivity shocks. Importantly, these propensities are heteroge-
neous, and vary with the firms’ stock of wealth and productivity level. By characterizing how
these propensities vary along the wealth and productivity distributions we provide novel evi-
dence on financial frictions and the self-financing channel. For example, in collateral constraint

0141 (Zit, Kig, ity Wigt1)
g _ o t+1 ity vty Waty, Wet4+1
q)it—i-l = ®9 (aita kitv Zit) - Ewit+1 |:

9The inclusion of v in the investment policy function represents a departure from the unobservable scalar
assumption required by the proxy variable. It is important to recall that under the proxy variable approach,
the investment function is not an object of interest by itself, as it only serves a role as an auxiliary equation to
recover the production function.

10As Gala et al. [2020] argue in footnote 10, including z;; instead of y;; requires the estimation of the pro-
duction function, which adds a number of econometric problems, most significantly, endogeneity. One of the
contributions of our paper is to address this issue and consistently estimate the production function and the
correct investment equation as a function of unobserved productivity.
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models, ®% is increasing in a;, whereas in earning-based models [Drechsel, 2022] and forward
looking constraint models [Buera et al., 2015] ®% it is increasing in z;. Moreover, in models
with a self-financing channel as in Moll [2014], ®7,, , is always positive and decreasing in a;.
Finally, as it is standard in both the macro literature and production function estimations,
we model the labor input as a non-dynamic input in the sense that current choices are not
affected by past values:
lig = ny (Zit, @ity Kit, wl,it) ) (13)

where equation (13) is the empirical labor decision. An extension from the stylized model in
Section 2 is that our empirical specification allows for potential effects of financial frictions over
hiring decisions, as represented by the inclusion of a; in the policy function. Once again, the
term w;; represents a shock that is independent across periods and independent of the state
variables a;, k;;, and z;;. This shock can capture exogenous transitory shocks to wages in the
model in Section 2 or optimization errors as discussed in Ackerberg et al. [2015].

To complete the model description, we formally make the following assumptions, using the
notation zf = (x;1,...,zy) for any variable x;.

Assumption 1. (Conditional Independence). For allt > 1:
(i) Output Shock: e;. s for all s > 0 is independent over time and independent of
aﬁfl, szl, igfl, k:f*l, It yffl and Nirs. Also €5 is independent of z;1, ayn and ki, and E [e4] = 0.
(ii) Productivity Shock: 1, for all s > 0 is independent over time and independent of
al™h 2 R and gt

(iii) Policy Functions Shocks: vy and w1, are mutually independent, independent over
time and also independent of zn, a;1, ki1 (€is, Mis) for all s and of vis and wisyq for all s # t.

Assumption 2. (First Order Markovian). For allt > 1:
(i) ai™" is independent of (ai™', ki™', 2i7") conditional on (a, ki, zi)
(1) it is independent of (aﬁ’l, [ zf’l) conditional on (a, kir, zit)

Parts (i) and (ii) of Assumption 1 state that current and future productivity and production
shocks, which are independent of past productivity and production shocks, are also independent
of the current and past wealth and capital stocks, investment, and labor decisions. The initial
wealth stock a;1, initial capital stock k;;, and initial productivity z;; are arbitrarily dependent.
Allowing for a correlation between a;1, k;;, and z;; is important, as wealth and capital accu-
mulation upon entry in the sample may be correlated with past persistent productivity shocks.
Part (iii) requires investment and wealth shocks to be mutually independent, independent over
time and independent of production components. Assumption 1 implies that €;, vy and w4
are independent of the state variables (ki, a; 2;) and mutually independent conditional on
(Lit, kit, i 7). Hence, Assumption 1 provides the exclusion restrictions necessary for identifi-
cation, while Assumption 2 is a first order Markov condition on wealth and capital dynamics.
Assumption 2-(i) is a natural assumption in macro models with a self-financing channel as the
one presented earlier; Assumption 2-(ii) is a standard assumption both in macro models as well
as in the empirical literature that estimates production functions.
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4 Identification

In this section, we establish the identification of the nonlinear dynamic panel model presented in
the previous section. Identification challenges in our model are more demanding than those of
firm dynamics models studied in the proxy variable literature due to the presence of additional
shocks in the policy functions. Therefore, it is important to show that the model we aim
to estimate can actually be identified from the data. Our model takes the form of nonlinear
state-space models. Recently, Hu and Schennach [2008], Hu and Shum [2012], and Arellano
et al. [2017] have established conditions under which nonlinear dynamic models with latent
variables are non-parametrically identified under conditional independence restrictions. We
build on these papers and use the insights of the self-financing channel to provide non-parametric
identification of the empirical model introduced in Section 3. In particular, the goal of this
section is to show that B, 5, Q. (2—1,Mi), he, giy1 are identified from data on (yi, ki, Ly,
Tit, Qity, Qir1) given that (zy, wii1, vy, €i¢) are not observed by the econometrician and z; is
correlated with (I, ay, k). To establish the identification of the non-parametric model, we
impose the following high-level conditions that connect with the model discussed in Section 2:

Let Xt = (ag ki, lir) be the covariates of the model and let f (a | b) be a generic notation
for the conditional desity faz (a | b).

Condition 1. Almost surely in covariate values X;: (i) the joint density f (ye,is, api1, 2 | Xit)
is bounded, as well as all its joint and marginal densities; (ii) the characteristic function of e;
has no zeros on the real line; (iii) for all z1; # zor, Pr[f (ist | 216, Xt) # f (3t | z2e, X3)] > 0; (433)
f (a1 | 2, Xy) is complete in zy. (i) for §u = vie — Bilie — Brkie, [ (Tt | ie—1), f(Zit | Jie—1),
f (i | §F) are complete and the distribution of f (2 | af, kf, gl is complete in (ai™", ki~", 47).

1) ")

Condition 1-(i) requires bounded densities. Condition 1-(ii) is a technical assumption previ-
ously used in the literature.!! The normal distribution and many other standard distributions
satisfy this condition. Condition 1-(iii) requires that f (i; | zi, Xix) be non-identical at dif-
ferent values of z;. This condition is weaker than the assumption in Olley and Pakes [1996]
and Ackerberg et al. [2015], where the realization of investment has to be monotonic in z;.
Here we require that two firms with the same level of current wealth and capital but different
productivity levels have different investment probabilities. Accordingly, the macro model with
earning-based constraints sketched in Section 2 fulfills this condition. Also, macro models with
only asset-based constraints fulfill this condition as long as the financial constraint is a soft
constraint where firms can borrow as much as they want, paying a premium in the interest rate
that depends on the level of collateral as in Cavalcanti et al. [2021].

Condition 1-(iv) is a completeness condition commonly assumed in the literature on non-
parametric instrumental variables [Newey and Powell, 2003]." Intuitively, we need enough
variation in the density f (@41 | zit, air, ki) for different values of z;. This requires a statistical
dependence between wealth accumulation a;;, 1 and productivity z;; conditioned on the observed
state variables. This requirement is met by the self-financing channel in the model described

UThis condition is used for the i.i.d shock of the household income in Arellano et al. [2017] and for the i.i.d
shock in the firm production function in Hu et al. [2020].

12The distribution of i | §it—1 is complete if E [¢ (%) | Fis—1] = 0 implies that ¢ (§;;) = 0 for all ¢ in some
space.
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in Section 2, where conditional on the same level of financial friction, highly productive firms
should accumulate more wealth to relax the friction in the future than less productive firms. In
instrumental variable terminology, this is a relevance condition that ensures that a;, is a valid
instrument for z;;. For example, suppose (a;i+, 2it, @i, k) follows a multivariate normal distribu-
tion with zero mean. In that case, the completeness condition will require that F [a;12;] # 0,
which is ensured by the self-financing channel. Similarly, 1-(v) is a completeness condition
that requires that z; and z;;_; are statistically dependent, which is ensured by the Markovian
assumption.

These conditions lead to the following theorem, which sequentially combines the results in
Hu and Schennach [2008] and Arellano et al. [2017].

Theorem 1. (Sequential identification) In a production function model with Markovian Hicks-
neutral productivity and financial frictions as in (7)-(13), if Assumption 1, Assumption 2 and
condition 1 (i)-(v) hold, then By, By, Q. (zi-1,Mit), hi, gir1 are identified from data on y;, ki,
lit; iit; Q¢ fO?” T Z 4.

The sketch of identification is sequential. First, we identify the production function param-
eters B, and ;. We then establish the identification of the productivity process, and finally,
we show the identification of the policy functions h; and ¢g;. Below we discuss the sketch of the
sequential identification and leave the details for Appendix A.2.

Production Function From Assumption 1, €, vy, and w1 are independent conditional
on (li, ki, air,zir), which can be interpreted as the exclusion restrictions in a nonlinear IV
setting. Using this conditional independence assumption, we can write the following conditional
distribution of the observed variables f (y;,4; | a;11, X;), which is a data object, in terms of some
elements of the model that we aim to identify:

[ Weyie | apr, Xi) = /f(?/t | 2e5 ke, 1) f (ie | 26, Xo) f (20 | @ega, Xo) dzy (14)

We notice that equation (14) can be framed into the setup studied in Hu and Schennach
[2008]. Given condition 1(i)-(iv), Theorem 1 of Hu and Schennach [2008] can be applied to
our setting to show that the distribution of the production function f (v, | 2, k¢, ;) is identified
from the data, which leads to the identification of the production function parameters [see Hu
et al., 2020]). A novelty of our approach is that our model with financial frictions provides a
second policy rule (the self-financing channel) that connects the latent productivity with an
observed variable a; 41 that is not directly linked to the production function regression (i.e a1
is not an input in the production function regression), so we can use it as an instrument. We
formally discuss the identification of the production function parameters when the investment
and wealth accumulation policy functions are nonlinear in Appendix 2 (see Proposition 1) and
to build intuition below we discuss the case with linear policies.

Intuition. To build intuition for identification, let’s consider the case where the policy
functions are normally distributed: i;; = h,2y + hei + Vi and a1 = .2 + Galir + Wig1.
Both policies give us information on z;. Similar to the proxy variables, we can invert the

13For simplicity of exposition, we consider the case where hy, = g = 0.
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investment function: zy; = myiy + may + T4vy where mp = 1/h,, 19 = —hy/h, and 7y = —1/h,
and replaced into the production function:

Vit = Bilix + Brkir + Tty + moai + Eit (15)

where &;; = ;4 + m4v. In the absence of investment shocks, a simple OLS regression between
Yir on Ly, ki, i and ay identifies 8, and B, as in the proxy variable approach. The difference
with the proxy variable is that the regression controls for a;;. Hence, rather than looking for
unconditional differences in investment across firms to control for differences in productivity,
we are considering differences in investment across firms with the same collateral constraints.
In the more general case with investment shocks (i.e v;; # 0), z can not be expressed only as
a function of observables and parameters. Therefore, even after controlling for current wealth,
one cannot disentangle variation in investment coming from z; from variation in other shocks.'*
The self-financing channel is key for identification. According to the model in Section 2,
more productive firms should increase investment and simultaneously accumulate more wealth
to reduce the constraint in the future. Therefore, the covariance between i; and a;1, condi-
tioned on current wealth a;;, allows us to isolate the variation in 7;; due to variation in z; from
the variation in 7;; due to variation in v;;. The identification sketch that we develop here pro-
vides a direct and simple estimation procedure by doing an IV regression to the proxy method
where the external instrument is justified by the theoretical insights of macro models. Hence,
a;t+1 can be used as an instrument for investment in equation (15,) given the conditional inde-
pendence assumption - wealth does not have a direct effect in the production function- and the
relevance condition (completeness) implied by the self-financing channel g, # 0. A regression
between E [yit | @it1, lit, kir, ai], and [y, ki, E i | airr, ki, Lis, @i , ag] identifies {3, w1, ma}.

Productivity Process Once we have identified [, §;, and given that the productivity is
Hicks-neutral, we can write the firm net-income process 9;; = yir — Orkit — Bilir as an additive
model with two independent latent variables (given Assumption 1). '

Yit = Zit + €t (16)

Given that z; is Markovian and ¢; is i.i.d over time, equation (16) has a similar structure to
the household income process model with non-linear Markovian persistent shocks studied in
Arellano et al. [2017]. To identify the productivity process we rely on the fact that the net-
income process in (16) has a Hidden-Markov structure (by Assumption 1) where {@;—2, Git—1, it }
are independent given z; ;. The additivity of the net-income process and condition 1-(v) allow
us to identify the joint distribution of (gs... €;r—1) and the joint distribution of (2.... zir—1)
from the autocorrelation structure of (g;1... gr) for T > 3 and identify Q, (z—1,7:) for T > 4.
For example, in the linear case z;; = p,zit—1 + M, we can use equation (16) to express the model
in terms of the observed net income process Uy = p.Ui—1 + Nt + it — p-Eir—1 and use three
waves of the net-income process {2, ¥ir—1, ¥} to identify p, from an IV regression using

14This violates the scalar unobservable assumption required by the proxy variable approach and, therefore,
the production function model can not be consistently estimated using OLS since E (4;:&;:) # 0

15For identification and estimation of production functions with non-neutral productivity see Doraszelski and
Jaumandreu [2018] and Villacorta [2018].
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Uit—2 as an instrument for g;;_; (given that g;_; and £;_; are correlated). Then, the variance
of the productivity shock and the variance of the measurement error in income are identified
from E (JuGi—1) = p-E (Gu-1Ji—1) — p-02 and E (Jubi) = p2E (Ji—1Gi—1) + 0727 + (1 —p2) .
In proposition 2 (in appendix A.2) we extend this argument and use the Hidden-Markovian
structure of {2, Uir_1, Uir } to establish identification of a non-parametric productivity process.

Policy Functions Once (zﬂ | g ) is identified, we use Assumption 1 and Assumption 2 to
construct the following IV moment restriction, which allows us to relate the conditional dis-
tribution of observable variables f (a1, k1 | §7), f (ar1 | o k', "), and f (i, | o', k', §") which
are data objects, to the distribution of the policy rules we want to identify (see proposition 3
in appendix A2).

fla ko | §7) = E[f (a1 k| 20) |57 =] (17)
/ (at+1 | atakt7?)T) =F [f (arr | 21, a, ky) | af = @tyk?f = k/’tﬂf = ﬂT} (18)
[ (keer [ a K G7) = B [f (ke | 2,00 k) | af = o' K = K 57 = 37 (19)

where the expectation in (17) is taken with respect to the density of z;; given g for fixed
values of a; and k; and the expectation in (18) and (19) are taken with respect to the density
of zy given gl k!, and a! for a fixed value of a;y; and kyyq, respectively. Equation (17) is
analogous to a nonlinear IV problem where z;; is the endogenous regressor and ! is the vector
of instruments. The difference with a standard nonlinear IV is that the ”endogenous regressor”
in the moment condition in (17) is a latent variable. However, this is not a problem since
we have identified (z;1 | g ) using the production function. Provided that the distribution of
(21 | 9I) is complete (condition 1(v)), the unknown density f (ai, k1 | z1) is identified from (17).
Similarly, equations (18) and (19) can be interpreted as nonlinear IV restrictions where a;; and
k; are the controls (they are arguments in the wealth function and investment functions), and
the vector g/ contains the excluded instruments. Given condition 1(v) and Assumption (2), the
distributions f (a1 | 2, ar, k) and f (ki1 | 20, ag, k) for t > 2 are identified recursively from
equations (18) and (19). The identification of f (a1 | 2¢, ar, k) and f (key1 | 2, ar, ki) allows us
to recover the policy functions g;41 () and h, (). Here, we are using the autocorrelation structure
of ﬂiT , conditioned on current values of a;; and k;; , to construct instruments (lagged and lead
values of the firm’s net income process) to identify the policy functions. For example, in the
linear case a;11 = g.2it + Gait + grki + wi1, we can use equation (16) to express the model
in terms of the observed net income process a;;11 = g.%it + gait + grkit + Wir11 — g.€ir, and
identify the parameters of the linear policy functions from an IV regression using ¢;_1 as an
instrument for ¢;, (given that ¢;; and &; are correlated) and controlling for a;; and k;.

5 Empirical Strategy

In this section, we discuss two approaches to estimate different versions of the empirical model
presented in Section 3. First, we consider a parsimonious model where at least one of the
policies is a quasi-linear function in productivity and separable in productivity and the policy
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shock. For this model, we propose a novel procedure that consists of an IV regression within the
proxy variable framework, following the identification strategy presented in section 4. Second,
we consider a more flexible model that allows for unrestricted nonlinear effects of productivity
and we consider a flexible estimation method well suited for nonlinear panel data models with
latent variables.

5.1 Parsimonious policy functions

Proxy-IV The identification of 8; and S using the IV-proxy method strategy requires that
at least one of the two policy functions is a polynomial of degree one in z;; and separable in z;
and the policy shock. The other policy function as well as the distribution of the shocks are
left unrestricted. For example, consider the following investment policy function:

bt = h(Zity ki, @it Vi) = By (Kigy @) + ho (K, aie) 2ie + vi, (20)

It is important to notice that model (20) is flexible enough to capture heterogeneous effects
of productivity on investment depending on the level of collateral. Meanwhile, the wealth
accumulation policy function is left unrestricted. As in the proxy variable approach, we can
invert equation (20) in terms of productivity:

zit = 71 (Kit, @it) + w2 (Kit, Qi) G + wiz (21)
where m; (kita ait) = —Iy (kita ait) /h2 (kitu ait), Uy’ (kz’tu ait) = 1/h2 (kita Clz‘t) and wy =
—;i¢/ha (kit, a;r). Replacing (21) in the production function:

Yir = Bilie + ¢ (kig, aie) + mo (Kig, ait) G + Wir1 + €t (22)

where ¢(ki, air) = Bkt +m1 (Kit, air). As we emphasized in section 4, an OLS regression of (22)
does not provide a consistent estimator of f; since E (w;; | i) # 0. However, given Assumption
1, a;41 can be used as an instrument for i;; in equation (22). Therefore, we propose the following
two-stage procedure:

First Stage: Estimate (22) with an IV estimator using ms (ki, ai) aii1 as the instrument
for my (kit,ait)ig. The IV regression delivers a consistent estimator of f;, ¢ (ki,a;) and
7o (Kit, ai) ayy1. For instance, in the linear case where gy (ki,a;) = 1, a;41 will be the in-
strument for ;.

Second Stage: Combining equation (21) with the Markovian model for the productivity
process 2y = P21 + Nt

Zit = P21 (Kit—1, @ie—1) + pama (Kit—1, Qit—1) Git—1 + P2Wit—1 + Mit, (23)
Replacing equation (23) into the production function:
Yir — Bilie = Brkir + pom1 (kie—1, @ie—1) + pamo (Kit—1, Qit—1) Git—1 + p2wit—1 + Nie + €it, (24)

using assumption 1 we can define the following moment condition from equation (24)

E (wit—1 + Mg + i | ki, ki1, @ie—1,a¢) = 0, (25)

The moment condition in (25) allows us to identify 8. We refer to this novel estimator

as Proxy-IV. Once (; and [ are estimated we can estimate the productivity process and the

policy functions following the IV strategy discussed in section 4 for the simple cases where
productivity and the policies are linear functions.
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5.2 Flexible policy functions

To estimate a more flexible model that allows for nonlinear persistence in productvity and
nonlinear interactions between z; and observed state variables in the policies, we bring the
following nonlinear specifications to the data:

(i) For productivity, we implement the following quantile specification:

R

zip = Q (Zt—la Uit) = Z 049(7)¢9 (Zit—l)

r=1

where 7 represent the 7th conditional quantile of z;; given z;_1, (bf? is a dictionary of functions
and a¥ the parameters associated which is quantile-specific, allowing the effect of z;_; on
zi to change with the shocks. The quantile model is a direct non-parametric model for the
conditional distribution of productivity, as it does not assume normality or impose separability
in the productivity process, leaving the dependence structure of z; unrestricted beyond the
Markovian assumption.

(ii) For the policy functions, we use these nonlinear specifications:

R

. h h h

it = E . Q) (Zitakitaaitaét) + Vit

r=1
R

_ § : g

Qit+1 = aicbi (Zit, ki, ait, 5t) + Wit

r=1

R
Ly = Z ay oy (Zit, ki, i) + Wi

r=1
where ¢, ¢9 and ¢ are dictionaries of functions and o, o and a” are the associated
parameters. Note that ¢", ¢¢ and ¢" are anonymous functions without an economic interpreta-
tion, as they are just building blocks of flexible models. The objects of interest will be summary
measures of the derivative effects constructed from the model, like the propensities discussed in
Section 3. We follow the proxy variable literature and model the functions as high-order poly-
nomials to allow for flexible interactions between productivity and observed state variables.
In our baseline specification of the nonlinear model, we specify stationary policy functions
with additive errors that are normally distributed to have a more parsimonious model to take
to the data, but, as we showed in Section 4, the model is non-parametrically identified with

time-varying functions, non-additive errors and without parametric distributions.

Stochastic EM Estimation Algorithm (SEM) We adapt the stochastic EM algorithm in
Arellano and Bonhomme [2016] and Arellano et al. [2017] to our production function framework
to estimate the nonlinear model with latent variables. See details in Appendix A.3.
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6 Data and Empirical Results

6.1 Data

Our database comes from administrative records generated by Chile’s tax collection agency
(Servicio de Impuestos Internos - SII). The records covers all firms that operate in the formal
sector and all formal wage employment in Chile. Each firm in this administrative dataset is
assigned a unique identifier by SII, so they can be tracked across time while at the same time
preserving anonymity and the confidentiality of the data. We use information contained in
income tax form F22, which is submitted annually by firms. The data set contains information
on firms (as opposed to plants) of all sizes and sectors, although we focus on firms operating in
the manufacturing sector. Firms are defined as productive units that generate revenue, utilize
production factors and operate under a unique tax ID that allows us to track them across time.
Data is available on an annual frequency.

Form F22 has firm-level information on annual sales, expenditures on intermediate materials,
a proxy for the capital stock (“immobile assets”) and the firm’s wage bill, as well as the firm’s
economic sector. We combine this information with tax form 1887, which reports monthly
information on individual workers that were employed on the firm, and therefore allows us to
calculate a measure of annual employment adjusted by the number of months per worker.

Crucially, form F22 also provides information on the firm’s balance sheets. In particular, we
can build a measure of net worth, defined as the difference between reported total assets and
total liabilities'®. This allows us to combine the information on the production side traditionally
used in the literature on production functions and TFP estimates with information on the firm’s
self-reported wealth and its evolution across time.

To clean up the raw data and have a dataset that is consistent with our empirical strategy,
we follow several steps. First, we drop observations with zero or missing information for the
capital proxy, sales, expenditures on intermediate inputs, employment or net worth. Second,
we focus on firms that have at least 5 workers. Third, we build a measure of annual investment
by using the annual change in the capital stock and assuming a 10% depreciation rate'” The
final dataset has 4867 firms in the manufacturing sector between 2005 and 2016.

As discussed earlier, the data set provides a panel of firms of different sizes and characteris-
tics in the context of an emerging economy. Although we do not have information over whether
firms are publicly traded, the relatively small coverage of the Chilean stock market (768 firms
across all sectors) implies that a very large share of our firms must be private. Having infor-
mation on balance sheets is an advantage relative to most databases used in the literature on
production function estimations, either from surveys or administrative records, which typically

16In particular, we use code 123 of form F22, "Total del Pasivo”, for total liabilities. This variable is the
combination of all the liabilities of the firm, as the tax form does not provide a decomposition between financial
liabilities, credit from suppliers, etc. Similarly, total assets come from code 122, "Total de Activos”, which
combines all assets, including financial instruments as well as our capital proxy, ” Activo Inmovilizado”, code
647. Net worth is calculated simply as the difference between both. This means that our measure of physical
capital (code 647) is equal to net worth (code 122 - code 123) plus total liabilities (code 123) net of non-capital
assets (code 122 - code 647).

17As an alternative, we also use the information on tax form F29, which has monthly data on investment in
machinery and equipment. The behavior of both investment series is very similar.
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provide detailed information on the production side of firms but do not account for assets or
wealth. Moreover, we can directly observe wealth accumulation and investment decisions at
the individual level, as well as the dynamics of output, inputs, and the estimated productivity
process. The combination of financial statements and information on the production side is
not unique to our dataset, as similar data is available, with long and detailed information for
a large number of countries in datasets such as Compustat, Amadeus and Orbis. However,
relative to those sources, our dataset has the advantage of including an heterogeneous set of
firms operating in an emerging economy. In that sense, this might be a better setup to study
the effects of financial frictions, that are likely to be less relevant in the developed world, in
particular for relatively large firms. Other datasets, such as the Enterprise Surveys conducted
by the World Bank, are similar to ours in that they also include firms of all sizes in developing
countries, although by their nature they are less suited to follow a specific firm across several
consecutive years, as we do here.

Table 1 presents some descriptive statistics of the data. As expected, there is a large degree
of heterogeneity between firms. Sales for firms in the 90th percentile are 40 times larger than
those in the 10th percentile, while differences in capital or investment are even larger. While the
average firm has 91 workers, the median firm has only 20, and firms in the 10th percentile have
7. There is also large variation in net worth, both in levels as a ratio to capital. This highlights
that the data contains a diverse set of firms, some of them quite small and with very low levels
of wealth. While our data still has omissions (as it can not account firms in the informal sector),
it seems fit to provide a rich characterization of the behavior of heterogeneous firms over time
and the potential role of financial frictions, in the context of a developing country, and enriches
the evidence previously available in the literature, in the spirit of the discussion in Diggs and
Kaboski [2022] 5.

Finally, a relevant reference point for the dataset used in this paper is ENIA, the man-
ufacturing sector survey for Chilean firms that has been widely used in the literature (see,
for example, Gandhi et al. [2020], among many others). Similarly to this dataset, ENTA has
rich information on production, investment and employment, but is silent regarding the firm’s
financial position, so it cannot be used to implement our framework. Interestingly, the OP
estimates of the production function parameters using our administrative set reported in the
next section are similar to those that can be obtained using similar methodologies with ENTA.
This provides a form of external validation to this dataset in the sense that it is associated to

estimates for Chile that are quantitatively consistent with those obtained in the large literature
that has used ENIA.

6.2 Empirical Results

We now use the data presented in the previous section to implement the empirical methodology
discussed in Section 5. Following our previous discussion, we begin by estimating firm-level
production functions, correctly accounting for the presence of financial frictions, and showing

18 «“Perhaps the biggest obstacle in researching financial frictions in developing countries is data availability.
Ideally, data would consist of information on firm ability (potential) and wealth over several years. Additionally,
data may not include representative coverage of all firms. To have a full understanding of the firm-side of an
economy it is necessary to include businesses across sectors and wealth, both privately and publicly owned, and
formal and informal firms.” (Diggs and Kaboski, 2022)
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Mean pl0 p50o p90
Value Added (million CLP)  1647.4 39.7 188.0 1536

Capital (million CLP) 2393.9 7.90 90.5 11979
Number of Employees 91.73 7 20 150
Investment (million CLP) 549.7 0.7 16.1  270.7
Net Worth (million CLP) 868.0 5.1 37.2  365.0
Capital to Output ratio 2.19 0.06 0.46 243

Net Worth to Capital Ratio  4.76 0.05 0.41 3.79

TABLE 1: Sample Descriptive Statistics

the biases associated with traditional methodologies. We then use those estimates to study the
properties of the firm-level productivity process. In the second part of the section, we present
a novel and detailed empirical characterization of investment and wealth accumulation policy
functions at the firm level, highlighting the role of non-linearities and providing an empirical
analysis of the self-financing channel.

Our production function estimates, robust to financial friction, differ significantly from those
obtained with the proxy variable approach. The differences align with the predictions from the
stylized model described in Section 2. The same holds true for the underlying productivity
process. We show that the productivity process of firms is highly non-linear, as the persistence
of productivity shocks depends on the previous level of productivity and the features of new
productivity shocks. Crucially, the persistence is heterogeneous across firms with higher values
for ex-ante high productive firms. However, extremely large shocks can change the persistence
of the productivity process. Therefore, an unusually large negative productivity shock on a
very productive firm can permanently alter the relationship between past and future produc-
tivity. These findings are in stark contrast with the standard linear AR(1) productivity process
typically assumed in the literature.

Regarding the characterization of the policy functions, we find a large degree of heterogeneity
in the sensitivity of firm investment and wealth accumulation to productivity shocks. We
present novel evidence on the nonlinear relationship between investment and productivity at
the firm level, with larger responses in investment to productivity shocks in firms with higher
levels of previous productivity, at all levels of wealth. Our results are consistent with the notion
of collateral constraints, with a more considerable sensitivity to productivity in firms with larger
wealth, but also with the existence of earning-based constraints, as productive firms with low
levels of wealth are still able to invest more in the face of positive productivity shocks. We
also show novel evidence supporting the existence of self-financing at the firm level, with the
savings propensity to productivity being very large in low-wealth, productive firms. However,
the impact of self-financing appears to be limited, as convergence in the marginal product of
capital between constrained and unconstrained firms is slow.

6.2.1 Production Functions

To highlight the importance of considering financial frictions in the estimation of the firm
production function and the firm productive process, we start by comparing the results of our
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two novel estimators that control for financial frictions (Proxy-IV and SEM) with OP -the proxy
variable approach in Olley and Pakes [1996]- which uses investment as an auxiliary equation
to recover productivity, and provides our main benchmark to previous literature. To have an
alternative benchmark we also compare our results with LP -the proxy variable approach of
Levinsohn and Petrin [2003]-, which uses intermediate inputs as an auxiliary equation to recover
productivity.

As discussed in Section 2, we expect OP to underestimate the capital elasticity, and to
overestimate the labor elasticity, as it incorrectly interprets differences in value added due to
financial constraints as generated by differences in productivity and not in capital. This bias
in estimated productivity makes the co-movement of output and labor stronger than expected,
generating a larger estimated elasticity of labor. By a similar argument, we expect the same
type of bias in other methodologies relying on a proxy variable approach, such as LP.

Table 2 presents the results of the full estimation of the production function parameters
(B1, Br) using the four methodologies. There are significant differences across estimators, with
a general pattern that is consistent with the presence of financial constraints and with the
theoretical predictions derived earlier. Controlling for wealth in the policy functions allows
us to discriminate between productivity and the effects of collateral constraints. In addition,
by relying on the co-movements between wealth accumulation and investment decisions, after
controlling for the current stock of net wealth, we can disentangle productivity shocks from
transitory shocks that can temporarily affect investment and saving decisions. The estimate of
B is 0.67 for OP, and, as expected, decreases significantly for the estimates that are robust to
financial constraints and allow for shocks to the policy equations, to 0.44 in Proxy-IV and 0.46
in SEM.

Conversely, the opposite pattern holds for the elasticity of capital: the estimate of [ is
0.35 for OP and increases to 0.42 for Proxy-IV and 0.43 for SEM. Similar biases appear in
the LP estimators, which suggest that financial frictions are also present in the demand for
intermediate goods as in Mendoza and Yue [2012] and Bigio and La’o [2020]."

These differences in the estimated input elasticities have relevant implications for the degree
of returns to scale at the firm level, a crucial parameter to understand aggregate dynamics. In
particular, OP results are consistent with constant returns to scale, while Proxy-IV and SEM
both imply decreasing returns to scale with a span of control around 0.87. This figure lies on
the upper-end of the range used in the related literature (for instance, Buera and Shin [2013a)]
use 0.79 while Restuccia and Rogerson [2008] and Midrigan and Xu [2014] use 0.85). This lower
span of control relative to OP implies a larger entrepreneurial income share that can be retained
by firms, which allows for a faster accumulation of wealth to overcome financial constraints.

To complement our results, we simulate data from an extended version of the stylized model
presented in section 2 to confirm the biases of the proxy variable approach and the robustness
of our proposed estimators. In line with the empirical estimates with the Chilean data, we set
Br = 0.43 and 5; = 0.44 in the calibrated model. See Appendix A.4 for model and calibration
details.

Table 3 presents the estimates for simulated data. As expected, OP delivers biased esti-

90ur proxy variables estimates of the production function are similar to ones in Gandhi et al. [2020]. Their
proxy variable estimates for a value-added production function with the Chilean data are 0.77 for ; and 0.33
for B.
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mates, whereas Proxy-IV and SEM recover the true underlying parameters.?’ Therefore, data
generated from a quantitative model, which explicitly includes financial frictions and the the-
oretical mechanisms described in Section 2, provides validation to our insights regarding the
biases of traditional methodologies in the presence of financial constraints, as well as validation
to our novel estimators.

oP LP Proxy-IV. ~ SEM

B 0.67 0.81 0.44 0.46
0.008 0.007 0.01 0.003
Bk 0.35 0.33 0.42 0.43
0.05 0.04 0.01 0.007
Oc 0.68 0.62 0.22 0.20

Observations 13516 13516 13516 13516
Firms 4867 4867 4867 4867

TABLE 2: Production Function Estimates from Microdata

Note: The table shows the Production function estimates from administrative data for Chile, using alternative
methodologies: OP - Olley and Pakes [1996]-, LP- Levinsohn and Petrin [2003]-, and two estimators that
control for financial friction, Proxy-IV and SEM.

OP  Proxy-IV SEM

B 0.505 0.443 0.442

Br  0.397 0.424 0.431

TABLE 3: Production Function Estimates Using Simulated Data

Note: Production function estimates from simulated data using alternative methodologies: OP - Olley and
Pakes [1996]-, and two estimators that control for financial friction, Proxy-IV and SEM. The model used to
generate data is described in Appendix A .4

20As the model does not include intermediate inputs as required by the LP estimator, we only use the OP,
Proxy-IV, and SEM estimators.
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6.2.2 Productivity Process: Distribution

Figure 1 depicts the productivity distribution across firms for the proxy variable approach
(OP, LP) and our more general model (SEM) that controls for financial frictions. There are
relevant differences in the dispersion of the estimated productivity distributions across both
methodologies. In OP, the standard deviation of productivity is 0.18, significantly lower than
0.40 under SEM (see Table 4). After controlling for financial frictions, we can see that extreme
productivity shocks are more likely to occur (relative to a productivity estimator that does not
consider financial frictions). Underestimating the productivity dispersion could have aggregate
implications as this parameter affect the conclusions of quantitative exercises. In quantitative
models, a lower dispersion implies less productivity fluctuation over time, reducing the effects
of financial frictions in distorting allocations. We also find that the gap between ours and
OP’s productivity estimates, i.e., the fraction by which true productivity is underestimated, is
increasing in the productivity level of the firm. For instance, the coefficient of a linear regression
between z5 M — 29F and 25"M is 0.7.

The fact that OP dampens productivity differentials across firms is once again consistent
with the presence of financial frictions: as their actual investment is relatively low, OP underes-
timates the productivity of constrained, high-productivity firms. Conversely, the productivity
of unconstrained but low-productivity firms, which can invest comparatively more, is overesti-
mated. Hence, by ignoring firm wealth, OP estimates a more compressed distribution relative
to the methods that are robust to frictions.

6.2.3 Productivity Process: Persistence

As discussed earlier, the persistence of productivity is a key object for the self-financing channel,
as it directly relates to the incentives for wealth accumulation. For instance, Moll [2014] shows
that low persistence in productivity leads to large effects of financial frictions on aggregate
TFP, as the self-financing channel is less powerful. This is the result of weaker incentives for
wealth accumulation when positive productivity shocks are not expected to last for long.

To highlight the importance of controlling for financial frictions when estimating produc-
tivity persistence with micro-data, we first show the results of the estimation of a linear AR(1)
model for productivity using the proxy variable approach and our estimator robust to financial
frictions. Table 4 presents results for productivity persistence when we fit a linear model. The
first row displays the autocorrelation of the estimated productivity p,.We can see that the es-
timated autocorrelation is considerably lower under OP. The estimated value of p, raises from
0.53 under OP to 0.87 in proxy-IV and 0.85 under SEM, respectively. This implies that OP
could potentially underestimate the incentives for self-financing.

Non-linearities. In most quantitative macro models, productivity is assumed to follow an
AR(1) process like the one in Table 4. As discussed in Section 3, one of the contributions of
this paper is to uncover firm productivity without relying on either linearity or distributional
assumptions. Figure 2 shows that the productivity process appears to be highly non-linear,
implying that the assumption of linearity used in the previous literature might be at odds with
the data. To disentangle the role played by past productivity shocks and new productivity
shocks on the nonlinear persistence, we estimate two different models. The left panel of Figure
2 depicts the estimated persistence of productivity for different levels of initial productivity
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(horizontal axis) from a model that is non-linear in past productivity but separable in new
shocks z; = ¢ (zi1—1) + 1. This model allows the persistence to be heterogeneous across firms
but does not allow new shocks to change the current persistence. Interestingly, the micro-data
reveals high heterogeneity in productivity persistence with a positive monotonic relationship
in past productivity. That is, firms at the lower end of the productivity distribution display
a smaller persistence (around 0.67), whereas ex-ante very productive firms display a very high
persistence (close to one). Therefore, highly productive will very likely remain at the upper
end of the productivity distribution in the future, while low-productivity firms have a shot at
becoming more productive in the future. This novel result has important implications for the
quantitative macro literature that study the role of financial friction. According to models as
in Moll [2014] and Buera et al. [2015], high persistence in productivity reinforces the incentives
for self-financing. The fact that persistence is the highest for highly productive firms bodes
well for the notion of self-financing, as it suggests that these firms have both the ability and the
incentives to build up collateral in order to grow out of their financial constraints and converge
toward their optimal capital. We analyze this notion more formally in the next section when
we embed the non-linear productivity process in the estimation of the policy functions of firms
and evaluate whether wealth and investment decisions change with productivity.

The right panel (panel b) of Figure 2 displays the estimated persistence of the more flexible
model z;; = Q. (2;-1, 7). As discussed in Section 3, this model allows the persistence to change
with past productivity and new shocks. Thus, for a given value of a new productivity shock, the
relationship between z;; and z;;_; depends on z;_1, and for a given value of z;_; the relationship
between z;; and z;_; may change in the face of extremely large (negative or positive shocks).
The 3-d graph displays the estimated persistence for different values of past productivity and
different values of new shocks. On the two horizontal axes, we report the percentile of past
productivity and the percentile of the innovation (the shock) of the quantile process. A value
at the lower end of the innovation distribution represents a very large negative shock, whereas
a value at the upper end represents a very large positive shock. As before, we uncover a huge
heterogeneity in persistence across firms depending on the size and sign of the shock. For the
most common types of shocks-events of a size close to the median of the shock distribution
(the middle section of the right horizontal axis), the relationship between past productivity
(left horizontal axis) and persistence (vertical axis) is positive and qualitatively consistent with
the result in the left panel, implying that for median shocks, persistence is higher for ex-ante
highly productive firms. Also, persistence increases in past productivity if firms experience
shocks that align with their previous productivity. For instance, a low-productive firm that
experiences a negative shock displays a persistence close to 0.7, whereas a high-productive firm
that experiences a very positive shock displays a persistence close to one. However, persistence
can change abruptly in the face of extreme events, consistent with similar results for household
income shocks (Arellano et al. [2017]). For example, productivity persistence in very productive
firms drops from almost one to 0.7 in the wake of an extremely adverse shock. A similar thing
happens to firms at the bottom of the productivity distribution that face an extremely favorable
shock. This means that large, infrequent shocks, besides having a direct effect on impact,
can also alter the existing relationship between past and current productivity, canceling the
cumulative effect of past shocks, permanently altering the trajectory of productivity. Therefore,
in the aftermath of an unusually large shock, the incentives to self-finance can change drastically.
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For example, in the wake of a very adverse productivity shock, a previously highly productive
firm might be much less willing to accumulate wealth towards the future.

——OP rreer LP = =SEM - Normal = =SEM - Quantile

-
-
L P L

25 2 45

FiGURrE 1: Estimated distribution of productivities

Note: The figure shows the estimated distribution of firm-level productivities using administrative microdata
for Chile, under alternative methodologies: OP - Olley and Pakes [1996]-, LP- Levinsohn and Petrin [2003]-,
and the SEM algorithm using Normal shocks and the SEM algorithm using a quantile model .

OP  Proxy-IV SEM

2 0.53 0.87 0.85
0.01 0.01 0.01
oy 0.18 0.30 0.39

Observations 13516 13516 13516
Firms 4867 4867 4867
R? 0.37 - 0.70

TABLE 4: Estimated Parameters of the Productivity Process
Note: The table shows the estimated parameters for the firm-level productivity process from administrative

microdata for Chile, using alternative methodologies: OP - Olley and Pakes [1996]-, and the two estimators
that control for financial frictions, Proxy-IV and SEM.
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(2) SEM -Normal (6) SEM - Quantie

FIGURE 2: Estimated persistence of productivity

Note: The figure shows the estimated nonlinear persistence of firm-level productivity using administrative
microdata for Chile. The first plot displays the persistence of estimated productivity using the model with
normal errors along the distribution of initial productivity, whereas the second plot displays the persistence of
estimated productivity using the quantile model where the size and the sign of the shock might affect the
persistence depending on the initial value of productivity.

6.2.4 Policy Functions

We now present the estimated policy functions, one of the main goals of our empirical exercise.
Given our interest in understanding the role of financial frictions and the self-financing channel,
we pay special interest to the estimation of policy functions and the analysis of the economic
forces that underlie them.

6.2.5 Investment Policy Function

Nonlinear propensities As mentioned earlier, this is the first paper that estimates nonpara-
metrically the investment policy function of a model with financial frictions using microdata
without relying on approximations. The estimated propensities from the investment model
inform us about how the behavior of firms in response to the same productivity shock varies
with different levels of state variables. Panels (a) and (b) of Figure 3 display the estimated
average derivative effect of productivity on investment ®! (a, k, z) (the investment propensity).
The three-dimensional graphs show how the response of investment to productivity changes for
different combinations of % and z. In panel (a), the propensities are evaluated at a fixed level
of low k, whereas panel (b) presents the results for a fixed level of high k£.?! For a fixed capital
level (a given firm size), evaluating the propensity for different wealth-to-capital ratios % allows
us to analyze how the investment response to productivity shocks depends on the financial sit-
uation of the firm. Note that firms with lower values of % are, by definition, highly-leveraged
firms.

Figure 3 shows that the estimated investment response to productivity is very heterogeneous,

21Confidence intervals are presented in Appendix A.5.

26



with values ranging from 0.05 to 0.6. Propensities are the smallest in low-productivity firms
with low levels of wealth. This is consistent with the idea that these firms are less able to
adjust investment in response to a positive and persistent productivity shock as they might be
collateral constrained and can not rely too much on current and future earnings. Therefore, this
provides evidence for the existence of financial frictions in the form of collateral constraints.

However, investment propensities increase as we move along both wealth and productivity
distribution.

In general, the sensitivity of investment to productivity shocks increases with z. This is, for
a given level of wealth and capital, investment responses to productivity shocks are larger for
ex-ante, more productive firms. This appears to be consistent with the empirical implications of
models of financial constraints in which firm productivity can affect firm lending contracts and
borrowing opportunities, as is the case in the models with earning-based constraints as in Lian
and Ma [2020], Drechsel [2022], and di Giovanni et al. [2022] or forward-looking constraints
as in Aguirre [2017], DeMarzo and Fishman [2007] and Brooks and Dovis [2020], in which
firms can use their future cash-flows as collateral. In those models, more productive firms
are able to take more debt for a given net wealth level and expand investment more. For
instance, the investment propensity of a high-productivity firm located at the bottom of the %
distribution is high (around 0.4). Even if these firms are collateral constrained, their investment
can strongly react to a positive and persistent productivity shock, as opposed to the response
of low productivity firms with low levels of %. The higher investment propensity for highly
productive firms may also reflect a form of conditional convergence, as their current capital
might be further away from their optimal capital relative to low productivity firms. However,
in the absence of earning-based constraints,under financial frictions the investment of a low %
firm might not adjust, even if it is very productive. Moreover, the larger investment propensity
for more productive firms is also consistent with the characteristics of the estimated non-linear
productivity process described in the previous subsection, and the fact that persistence increases
with the level of productivity.

Another important message from figure 3 is that investment propensities are increasing in
wealth for all values of productivity. For instance, as we move along the wealth distribution,
the propensity of low-productivity firms doubles from 0.05 to 0.1. For the high-productivity
firms, propensities increase from 0.4 to 0.6, the largest propensity increment (in levels) when
we move from the bottom to the top of the wealth distribution. This result might reflect that,
even with earning-based constraints, productive firms with low levels of wealth (net worth) are
still more financially constrained (in terms of the distance to their optimal size), and therefore
are the ones that benefit the most from an additional unit of wealth.

An interesting pattern that emerges from Figure 3 is that the positive relationship be-
tween the firm’s investment propensity and wealth varies with the firm’s productivity. For
high-productivity firms, the investment propensity converges to its maximum value of 0.6 for
values of % around 0.4, suggesting that those firms are no longer constrained, whereas for
low-productivity firms, the propensity is still increasing in % for higher values of %, suggesting
that those firms still face relevant constraints.

Comparing panels (a) and (b) of figure 3 we can notice that the propensity is decreasing in
k, with a more pronounced pattern for highly-productive firms. This again is consistent with a
notion of conditional convergence, in which highly-productive firms with low capital are further
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away from their optimal capital level than low-productivity firms with the same level of capital.

To have a taste of how propensities behave using the actual combinations of state variables
that we see in the data, we compute the propensity of each of the firms in our sample, and we
plot it against the wealth-to-capital ratio % in figure 4 panels (a)-(c). To analyze heterogeneity
across different productivity levels, we use our estimated productivity variable to cluster firms
in three different ”productivity groups”: (i) low-productivity firms with productivity below the
50 percentile of the productivity distribution, (ii) median-productivity firms with productivity
between the 50 and 75 percentile and (iii) high-productivity firms with productivity above the
75 percentile. The data replicates the patterns suggested by the estimated policy functions.
Investment propensities are increasing in % and in z. As we can see, there is a positive
relationship between the investment propensity and % for all productivity levels, although
the marginal impact of % is decreasing in %. Moreover, propensities are more prominent for
more productive firms.

For example, the investment propensity of low-productivity firms with little % (panel (a)) is
close to 0.1 on average. We can also see that for some firms with low productivity and very low
wealth to capital ratios, the propensity is close to zero, indicating that the investment of those
firms does not react much to productivity shocks. However, the propensity increases up to
0.3 as we move along the distribution of %. This positive relationship between the investment
propensity and 4 is present across all three productivity groups. Panels (b) and (c) show that
the propensities for median- and high- productivity firms start at 0.25 and 0.45, respectively.
These propensities are much higher than the propensities of low-productivity firms with a similar
level of %. As discussed earlier, a potential explanation is that these firms are more capable of
adjusting investment because they can rely on current and future earnings. However, collateral
constraints are also crucial for these firms, as propensities increase for firms with higher levels
of %. For median- and high-productivity firms, the propensity increases up to 0.4 and 0.6
(on average) and stabilizes around these numbers. The positive relation between investment
propensities and % for high-productivity firms suggests that earnings are not sufficient to self-
finance all the investment, and a combination of earnings and wealth are essential for all firms
with low levels of wealth as in di Giovanni et al. [2022]. For high levels of %, propensities are
roughly constant, as these firms are probably not constrained, and investment responses are
close to optimal.

6.2.6 Wealth Accumulation Policy Function

Panels (c¢) and (d) of Figure 3 display the estimated average derivative effect of productivity on
wealth accumulation (the nonlinear propensity) &7 1 (a, k, z) using SEM. As before, this method
allows the wealth accumulation policy function to be non-linear in productivity z. Hence, the
three-dimensional graph presents how savings propensities change for different combinations
of wealth and productivity. In almost all cases, the average derivative effect of productivity
on savings decreases as wealth grows, consistent with the notion that self-financing is more
important for firms with low levels of wealth. Similarly, for a given combination of wealth and
productivity, in most cases, propensities are increasing in capital, consistent with the theoretical
impact of larger leverage.

Regarding non-linearities, for a given level of capital, propensities are largest in firms that
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are highly productive but hold little wealth. In fact, the savings propensity to productivity
shocks in firms on the upper end of the productivity distribution and the lower end of the wealth
distribution is close to 1. This is, earnings shocks for highly productive but severely constrained
firms are almost entirely saved, as the value of alleviating the constraint is comparatively large.
As discussed earlier, this effect is reinforced by the larger persistence of productivity for highly-
productive firms, which provides more incentives to wealth accumulation for productive firms
as the theoretical mechanism in Moll [2014]. As predicted by theoretical models with the self-
financing channel, the propensity decreases as we move along the wealth distribution (up to
half of the value) since high-wealth firms are less constrained and have fewer incentives to save.

The savings propensity is also heterogeneous in productivity, as it is significantly lower for
low-productivity firms, which are probably less constrained and have fewer incentives to save.
However, at low wealth levels, even low-productivity firms save a considerable share of the
earnings associated with a productivity shock (the propensity is between 0.4-0.5) when wealth
is low. This propensity decreases to 0.2 as wealth increases.

We see similar patterns when we characterize saving propensities using the actual combina-
tion of all state variables that we see in the data (including estimated productivity) in figure
4 panels (d)-(f). Propensities are positive for all firms in the data and are increasing in pro-
ductivity and decreasing in wealth. Again, the propensity is higher for high-productivity firms
with low levels of wealth. As we discussed above, even for high-productivity firms that can also
rely on earnings, the investment propensity increases with wealth (see figure 4-(c)), so these
firms also have strong motives to save and accumulate wealth (see figure 4-(f)). The higher
wealth accumulation propensity for very productive firms is consistent with the insights of a
model where collateral and earning-based constraints interact. As emphasized in di Giovanni
et al. [2022], even with earnings-based constraints, more productive firms are more financially
constrained (in terms of the distance to their optimal size) for a given level of wealth (net
worth) and are the ones that benefit the most from an additional unit of wealth. In the bench-
mark parametrization of di Giovanni et al. [2022], a high-productivity firm has better access
to credit than a low-productivity firm, for the same level of wealth, through the earning-based
constraint. However, the high-productivity firm is still "more constrained” since it is further
away from its optimal capital level.

Moreover, in models with collateral and earning-based constraints, the marginal effect of
wealth on investment is increasing in productivity: an increase in wealth reduces borrowing
constraints directly through the standard collateral constraint channel, generating an increase in
investment and production, which in turn reduces borrowing constraints through the earnings-
based constraint channel. This indirect channel is more potent for high-productivity firms than
for low-productivity firms since their earnings increase more with the initial increase in wealth.
The latter creates a higher incentive for high-productivity firms with low levels of wealth to
increase savings and accumulate wealth in response to a positive productivity shock.

6.2.7 Quantitative Implications: MPKs convergence

To get a more direct appraisal of the implications of our estimated policy functions for the self-
financing channel, we use our data and estimates to look at the convergence of the marginal
product of capital (MPK) between constrained and unconstrained firms in the spirit of the
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Investment Propensity
(a) Low k (b) High k

Wealth Accumulation Propensity
(¢) Low k (d) High k

P9

F1GURE 3: Nonlinear model: Investment and Wealth accumulation propensities to productivity
Notes: The figure exhibits the estimated derivative effect of productivity in the investment policy function
(panels a and b) and the estimated derivative effects of productivity in the wealth accumulation policy (panels
¢ and d) function using the SEM method. The estimated model is highly non-linear, so the figure displays the
marginal effect for different values of productivity and the wealth to capital ratio for two different values of
capital.

exercise in Banerjee and Moll [2010].

To do so, we use the data and our estimates of firm productivity and the production function
to calculate the initial MPK of two firms that share the same level of initial productivity but
have different levels of initial wealth and capital. We then use the estimated policy functions
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FI1GURE 4: Investment and Wealth accumulation propensities in response to productivity

Notes: The figure exhibits how the investment and wealth accumulation propensity varies along the distribution
of % in the microdata for different productivity values. Each point represents the propensity of each particular
firm evaluated at its actual value of a, k, and z. Figures (a), (b), and (c) are the investment propensities for
low-, median- and high-productivity firms. Figures (d), (e), and (f) is the wealth accumulation propensities for
low-, median- and high-productivity firms.

to simulate the evolution of their capital, labor, and wealth across time, assuming that produc-
tivity is constant and there are no additional shocks. Using the estimated production function
parameters, we calculate the evolution of the MPK associated with the simulated capital and
labor path.

Results are presented in Figure 5. For each row, the graphs plot the evolution across time of
the marginal product of capital for a firm that starts on the lower end of the wealth distribution
(10th percentile) vis-a-vis firms with the same constant level of productivity z but larger levels
of initial wealth (50th percentile in the first column, 75th percentile in the second, 90th in the
third). We report the convergence in MPKs between a constrained and unconstrained firm
for three different productivity scenarios. The first row depicts firms in the 10th percentile of
the productivity distribution, while the 50th and 90th productivity deciles are presented in the
second and third rows.

Consistent with the self-financing channel, low-wealth, constrained firms are able to increase
their capital stock across time, such that the marginal product of capital converges towards
that of firms with similar firm productivity z but higher levels of initial wealth ay. Convergence,
however, is relatively slow, and marginal productivity gaps persist for decades. For example,
across all three productivity levels, the marginal product of capital in a firm with initial wealth
in the 10th percentile of the wealth distribution is close to three times larger than in a firm in
the 90th wealth percentile. While this gap closes steadily across the years, marginal products in
low-wealth firms are still at least twice as large as those of high-wealth firms after one decade.
The speed of convergence in our data is much slower than in Banerjee and Moll [2010], where, for
a similar initial gap, differences in marginal product between constrained and unconstrained
firms vanish in less than a decade. For example, among firms in the 90th percentile of the
productivity distribution, convergence in the marginal product of capital between firms in the
10th and 90th wealth percentiles takes more than 40 years, although half of the initial gap
disappears after ten years.

Therefore, our results indicate that while the self-financing channel plays an important role
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in reducing productivity gaps and the extent of misallocation in this context, it cannot offset
the persistence of significant differentials in marginal productivity over the medium term.

Low Productivity Low Productivity Low Productivity

years years years
Median Productivity Median Productivity

0 20 40 60 80 100 0 20 40 60 8 100 0 20 40 60 8 100
years years years
High Productivity High Productivity High Productivity

F1GurE 5: Convergence in the marginal product of capital across firms
Notes: The figure exhibits the simulated evolution of the marginal product of capital for firms with different
levels of initial productivity and wealth. Low-wealth firms (10th percentile) are depicted in red, while high-
wealth firms (50th percentile in column 1, 75th in column 2, and 90th in column 3) are depicted in green. The
first row presents firms in the 10th percentile of the productivity distribution, while the second and third rows
present figures in the 50th and 90th productivity deciles. The simulation uses the estimated production function

and investment and wealth accumulation policy functions, holding firm productivity constant.

7 Conclusions

We provide an empirical analysis of wealth accumulation and investment dynamics in firms
that operate under financial frictions and how these decisions relate to the unobservable firm’s
productivity process. We argue that standard approaches to recover productivity process from
production function estimations fail under the presence of financial frictions that limit the firm’s
ability to hire inputs, as the auxiliary equations used to characterize input decisions do not hold.
For instance, in the case of the OP estimator, the auxiliary investment equation does not account
for wealth, a relevant variable for capital decisions in macro models with financial constraints
such as Moll [2014] and Buera and Shin [2013b]. We argue that this renders a considerable
bias in the estimation of the parameters of the firm’s production function and, therefore, in
the estimation of the characteristics of the productivity process. As an alternative, we extend
the OP approach to account for financial frictions, introducing wealth and unobservable firm-
specific shocks in the investment demand function. This flexible framework allows us to jointly
model and estimate the firm wealth accumulation dynamics, its investment decisions, and the
unobservable productivity process.

Our results, using Chilean manufacturing data, show that not accounting for financial fric-
tion biases the estimates of the production function and underestimates the dispersion in pro-
ductivity. Additionally, we show that the productivity process seems to be largely non-linear,
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with larger persistence for more productive firms, while persistence can change significantly in
the face of extreme events.

We use our setup to provide a detailed analysis of the firm’s policy functions, with a
particular interest in understanding the mechanics of the self-financing channel. We show that,
consistent with theoretical predictions in the presence of financial frictions, the marginal effect
of productivity on investment is increasing in wealth and decreasing in capital. We also find
a positive and significant marginal effect of productivity on wealth accumulation, stronger for
more constrained firms, which provides support to the existence of an active self-financing
channel. We also use our estimated empirical model to measure the power of self-financing
on reducing misallocation by studying the convergence of MPKs of two firms with the same
productivity but with different levels of financial frictions. We show that the MPKs of these
firms converge over time, although the convergence is not fast and takes time. For instance,
when we compare firms at the 10th percentile with firms at the 90th percentile of the wealth
distribution, the MPK of poor firms is around three times the MPK of wealthy firms at the
initial period, and it takes more than 40 years to see convergence in their MPKs. Still, half of
the initial gap in their MPKs disappears after ten years.
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Appendix A.1: The bias in the OP estimator under financial frictions

Here we provide a more formal assessment of the types of biases emerging under OP in the
context of financial frictions, and, by extension, on other methodologies relying on the proxy
variable approach. As mentioned, Olley and Pakes [1996] propose a proxy variable approach to
address the endogeneity problem that arises when estimating the parameters §; and (5 from a
value-added production function in logs, using data on value added y;;, capital k; and labor [;;:

Yit = Bilie + Brkie + zie + €at, (26)

where £;; is measurement error in value added. The main challenge in the estimation of 3; and
B is that z; is an unobservable variable for the econometrician which is potentially correlated
with the observable regressors k;; and [;;, creating an endogeneity problem in the OLS regression
of y;; on k; and [.

The OP approach relies on using the investment policy function as an auxiliary equation
to obtain information on the unobserved productivity z;. For example, in the absence of
constraints, we can see from the investment policy function (4) that: iy = h(zy, kir). Under
the assumptions that z; is the only unobserved variable for the econometrician in h (known
as the scalar unobserved assumption) and that A is monotonic in z;, we can invert the policy
function to recover productivity as z; = h™! (i1, ki) and construct valid moment conditions.
For instance, we can rewrite (26) as:

Vit = Bilie + Brki + ht (iit, kit) + €z (27)

Since g;; is assumed to be uncorrelated with the inputs, OP propose to approximate
h= (i4, ki) with a high-order polynomial on investment and capital and run an OLS regression
of y; on ly, ki, and the non-linear, time-dependent polynomial h~1 (i, ki) to estimate (; and
Br. However, the OLS regression identifies 8, but cannot separate [3; from the linear part of
h=(i4, ki). Thus, in a second step, OP exploits the Markovian productivity process to estimate
Br by regressing the following model:

7t (i, kit) = Brkir + pire—1 (Gir—1, kit—1) — pBrkit—1 + Mt + Eit (28)

where 7; (i, ki) denotes the estimated fraction of output explained by investment and capital
in the first step, m (i, kit) = Brki + h ™ (13, ki) [see e.g. Ackerberg et al., 2015] for details.

As discussed, observed differences in investment between firms in the data are intepreted
as productivity differentials under OP. Hence, by controlling for investment in the production
function, OP can eliminate the endogeneity problem and get consistent estimates of §; and .
However, under borrowing constraints, differences in investment between firms might not only
reflect differences in productivity, but also differences in borrowing capacity.

In the model with financial frictions described in Section 2, the investment function arising
from (3) depends not only on productivity and initial capital, but also on net-worth, through
its direct influence on the strength of financial frictions. When we invert the investment policy
function in (4) we obtain z; = h™ (i, ki, ai), with h;' > 0, h,;l > 0 and h;' < 0. Therefore,
for a given level of investment, firms facing more severe constraints due to low levels of net-worth
are more productive. The intuition is direct: For a given productivity level, an unconstrained
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firm will always invest more than a constrained firm. Therefore, for a given level of investment,
it must be that the unconstrained firm is less productive. Replacing z; in the production
function we have:

ye = Bl + Brkic + b (i, ki, ait) + € (29)

Hence, when implementing OP’s first step, the term that captures the severity of the constraint
due to net-worth would go to the error term of the OP regression in equation (27). Thus, if
firms operate under borrowing constraints, the OP regression will render biased estimates of
and By due to the correlation of the regressors with the omitted variable a;;. Given that the
OP estimation proceeds by two steps, we can analyze the biases separately. Let’s focus first on
the estimation of ;. To see the sign of the correlation between [l;; and a;; replace the expression
for z; obtained after inverting (4) in the FOC for labor (77?):

1
lig = ¢ + -5 (6kk1t +w+ B (i, ke, a’it)) (30)
— b

Therefore, after controlling for k; and 4;, the correlation between [; and the OP residual
is positive.???* Because OP cannot control for a fraction of productivity, which goes into
the residual term when applying OP to (29), and as labor is increasing in productivity, the
coefficient is biased upwards and BZOP > ;. To see the intuition suppose there are two firms
with different productivities but that have the same level of capital and investment due to
differences in collateral. OP will tend to equalize estimated productivity between the two,
despite differences in output. The productive firm, that is more financially constrained, will
choose to hire more workers, since frictions do not directly affect the labor market.?* Since
the OP estimator equalizes productivity between the two firms (given that they have the same
investment), it will assign all the difference in output to differences in the amount of labor,
leading to an overestimation of f;.

In the case of the capital elasticity the relevant regression is the one implemented in the
second stage (equation (28)). In the OP estimation, the function 7;_1() does not include
a;—1 and this part of the function goes to the regression’s error term. Given that h, > 0 in
equation (4) and that k; is increasing in i;_1, there is a positive correlation between the stock of
capital used in production, k;;, and a;_1 - the level of collateral at the moment the investment
decision is taken-. Therefore, he <0 implies a negative correlation between the OP residual in
equation (28) and k;, leading to a downward bias: Bkop < Bk. Intuitively, financial constraints
generate differences in investment and capital for equally productive firms. The OP framework
interprets the observed differences in investment as differences in unobserved productivity, and
assigns part of the observed differences in output, which are due to capital, to variations in the
productivity proxy, implying a lower estimated marginal effect of capital.

22For example, if A=t (i, kig, ai)) = hyiit + hikis + haai; were linear, then the sign of the biases in BZOP and
Akop will depend on h,E [lizait | ¢, kit] > 0 and hoF [kirait—1 | Fre—1, kit—1] < 0.

23Note that I;; depends only on the constants ¢; and w, and on state variables, so it is linearly dependent with
the rest of the regressors in the production function regression [see Ackerberg et al., 2015]. In our empirical
model we allow for the existence of an additional determinant of labor that can capture firm-specific iid shock
in wages.

240ther models consider that financial constraints can affect the labor input as well. However, we should still
expect an upward bias on ; when the effect of frictions in the labor input are less severe. In our empirical
model we will allow the labor input to also depend on the collateral constraint.
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Appendix A.2: Proof of Identification

Here we discuss theorem 1 and show that Sk, 5;, ¢ (zit—1), he, giv1 are identified from data
on Yit, kit, L, 134, ay for T > 4 in a sequential way. First, we establish identification of the
parameters of the production function. Second once (3, and [3; are identified, we show that the
joint and marginal distributions of the productivity process are identify from the time series
dependence structure of the net income process. Finally, once the conditional distribution of
the productivity process given the firm net income process is identified, we show that h;, g;11
are identified.

Step 1: Production function Using the conditional independence assumption in as-
sumption 1 we can write the following conditional distribution of the observed variables
f (Yit, Gt | @is1, Xit) in terms of some pieces of the model:

f (yz‘t,iz't | ait+17Xit> = /f (yit ’ Zit,iz‘t,aitH,Xz’t) f (iit | ZmaitH,Xit) f (zit | ait+17Xit) dzy,
(31)
where f (yit | zit, ki, lix) is the conditional distribution of the production function. From as-
sumption 1, €, vy, and w;yq are independent conditional on (I, ki, a; z:), which can be
interpreted as the exclusion restrictions in a nonlinear IV setting. Thus, we have that
f (yz‘t | Zz'uiz’t,az'tﬂ,Xit) =f (yz‘t | Zit, Kit, lit) and f (iit | Zz’tyaz‘t—i-laXz’t) =f (iit | Zz't7Xit>7 and we
can re-write (31) as

f (yit,iit | ait—i—laXit) = /f (yit | Zit, kit lit) f (iit | ZitaXit) f (Zz't | ait+17Xit) dziy (32)

Now, the identification challenge is to recover the latent conditional density of the produc-
tion function f (yi | zit, kit, lir) given the observed conditional density f (yi, i | i1, Xir). We
notice that given assumption 1 and the structure of our dynamic model, our setup can be framed
into the setup studied in Hu and Schennach [2008] and Hu et al. [2020]. Hence, Theorem 1 of
Hu and Schennach [2008] can be applied to our setting to show that f (vit | zit, kit i) is identi-
fied from the data. Once we identify f (yit | zit, ki, lix) we can construct E [y | zie = 0, ki, L] =
Bilis + Prky and identify (B, §; with a regression between E [y; | zis = 0, ki, Liy] and (1, ki) as
in theorem 1 in Hu et al. [2020].

Discussion: An important difference of our framework from Hu et al. [2020] is that our model
with financial frictions provides a policy rule (the self-financing channel) that connects the
latent productivity with an observed variable a;, 1 that is not directly linked to the production
function regression (i.e ;1 is not an input in the production function regression). Hence, we
do not have to use the policy rule in ¢+ 1 to avoid collinearity between inputs and therefore k;,
is not part of the covariates in X;. This allow us to have a standard law of motions for capital
as in Olley and Pakes [1996] and Ackerberg et al. [2015] without the need of an unobserved
component affecting the law of motion of capital. The latter is particularly important in applied
work because most of the cases the researcher do not have data on both capital and investment
separately and use the perpetual inventory method to recover the capital series from investment
or vice-versa.

40



We then have the following result, which is a direct application of theorem 1 in Hu and
Schennach [2008] and theorem 1 in Hu et al. [2020].

Proposition 1. Under the conditional independence assumption in assumption 1, the high-level
conditions in condition (1) (i)-(iv), and the assumption that the €4 has mean zero, 5, and By
are identified from the observed density f (yi,tit | irr1, Xit)

To show how theorem 1 of Hu and Schennach [2008] can be applied to our setup, we will
follow their paper and define the integral operators and show that it admits an eigenvalue-
eigenvector decomposition that can be learned from data. Then, to build intuition and remark
the importance of the wealth accumulation equation, we will make a connection with the
IV setup discussed in the linear model. Lets define L, x as the integral operator such
that Ly.rjax = [ f (ye,ie | aes1, Xo) p (a1 | Xy) da and Dy, x is a ”diagonal” matrix operator
mapping the function g (z | X) to the function to the function f (i; | z;, X;) g (2 | X) for a given
value of investment i. Analogously, L., and L. x are the integral operators associated with
the conditional densities f (y; | z¢, ke, lt) and f (az41 | 2, Xi), respectively. Equation (32) can be
expressed in terms of integral operators:

Ly;[|a,X = Ly\z,k,lDI;z|XLz\a,X (33)
Integrating both sides of (32) with respect to I:
Ly|a,X = Ly|z,k,le|a,X (34)

From (34), we can see that the identification of Ly, »; = Ly‘a,XL;‘i’X, our object of interest,
has the form of an IV regression where a;; is the instrument for the endogenous variable z;
after controlling for covariates in X;;. This type of IV approach is unfeasible because z; is
unobservable. However, replacing (34) in (33) we get:

—1 o -1
Lytax Ly, x = LylzwkaDrzix Ly, (35)

Note that the observed quantity L,.jjq, XL;I}I, « in (35) admits an eigenvector-eigenvalue de-
-1

composition Ly‘z7k71D1;z|XL;|;k’l. Therefore, L. x, is identify as the eigenvector of Ly;fla,XLym,X

of (35). If Ly x; is identify, then f (v, | 2, ke, ;) is identify.

Rank Condition (Injectivity) To identify L,.;; from (35), the inverse of L, x has to
exist. Looking at (34) we can show that Lyjo x has an inverse if Ly, ;; and L, x are invert-
ible. Given the linearity and additivity of the Cobb Douglas production function in logs, the
assumption that the characteristic function of ¢;; has no zeros on the real line will ensure in-
yectivity (and invertibility) of Ly, ;. The operator L, x is injective (and invertible) if there
is sufficient variation in the densities f (a¢y1 | 2¢, ar, ki) for different values of z;. The condition
for f (a1 | 2, ar, ki) requires an statistical dependence between wealth accumulation a;;y1 and
productivity z; conditioned on the observed state variables. This requirement can be met by
the self-financing channel in equation (10) which implies a positive relationship between pro-
ductivity and wealth accumulation for all constrained and non-constrained firms. In the IV
terminology, the later is a relevance condition, that ensures that a;, is valid instrument for
Zit, similar to the condition discussed in the linear case. Note that the expression L,.jjq, XL;@, <
in (35) looks like and IV regression using i;; as the proxy measure with error of z; and a;y1 as
the instrument for the proxy measure once we control for Xj;.
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Step 2: Productivity Process Given that our production function is Cobb-Douglas with
Hicks neutral productivity, the net income process (after netting out the firm production func-
tion from the endogenous inputs) in (16) is linear and additive in the two unobserved compo-
nents. The linearity and the stochastic assumptions on z;; and e; allow us to frame our model
into the Nonlinear Markov model studied in Arellano et al. [2017]. Hence the identification of
the productivity process follows the same arguments in Appendix A.1 and the supplemental
material S.4 in Arellano et al. [2017].

Proposition 2. Identification of the Productivity Process. In a Cobb-Douglas produc-
tion function with Markovian Hicks neutral productivity as in equations (77 )-(8), if assumption
(1) and condition (1)(v) hold and 5, and By are previously identified, then the joint distribution
of (€ia,... ir—1) and the joint distribution of (2. zir—1) are identified from i.i.d observations
of (i1, Uir) where Yy is the net-income process for T'> 3. With T > 4 the Markov probability
Fezer (it | zie1)) and ¢ = E [z | 2i—1] are identified.

To provide some intuition on how identification works in our production function model
we follow the discussion in Arellano [2014] and Arellano et al. [2017] and applied to our firm
net income process. Following Arellano [2014] and Arellano et al. [2017], we first discuss the
non-parametric identification of the distribution of €;; for all t. Then using the linear structure
of equation (16), by deconvolution, we can identify the distribution of z;.

Given assumption 1 (i) and (ii) we can write the following nonlinear IV equation:

it = ¥ (Jir—1) + Gt (36)
Uit—1Tit = @ (Tir—1) + Vit (37)

where E [(; | Jit—2] = 0 and E'[vy | Ui—2] = 0, and 9 (.) and ¢ (.) are the solutions of an IV
regression where ;o is the instrument of ;1 in (36) and (37): E [gi — ¥ (Git—1) | ie—2] = 0
and E [Ui—19it — ¢ (Jit—1) | Gir—2) = 0. The solutions v (.) and ¢ (.) exist and are unique if both
the conditional distributions of ¢ | ¥i—1 and %y 1 | §i are complete. This is a nonlinear
relevance assumption that is ensured by the markovian condition of z;. The distribution of
Uit | Yir—1 is complete if E [¢(7it) | ie—1] = 0 implies that ¢(7;;) = 0 for all ¢ in some space of
functions (Newey and Powell 2003).

Identification of ¢ (.) and ¢ (.) relies on the autocorrelation structure in the data (;1.... gir).
Note that both ¢ (.) and ¢(.) are data objects that can be estimated with data on
{Git—2, Git—1, it }-

Given assumption 1 (parts (i) and (ii)), {@it—2, Git—1, Uit } are independent given z; 1. Pro-
vided that the conditional distribution of z;;_; given 7;_» is complete we have:

E (it | zit—1) = E (¥ (ie-1) | zie-1) (38)

zit 1 B (?jit ‘ Zitfl) =F (¢ (Igit—l) ’ Zitfl) . (39)

Equation (38) uses the condition that E (¢ (Ji—1) | zit—1,it—2) = E (¥ (Giz—1) | ziz—1) and
E (G | zit—1,0it—2) = E (Ui | za—1), while equation (39) uses also the condition that

E(git-1 | zit—1) = 0 and E (¢ (Gie—1) | 2it-1, i—2) = E (¢ (Jir—1) | 2it—1)-
Since ¢ (.) and ¢ (.) are identified from (36) and (37) and data on {@;—2, Jir—1, Uit }, We can
use equation (38) and (39) to identify the distribution of €;;_; for a fixed value of z:

E€z‘t71 [ZQ/) (Z + git—l)] = E€it71 [QS (Z + Eit—l)] (40)
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By deconvolution we can recover the density of ;1 from (40). Using the same argument
we can recover the density of ey using {¥it—1, Git, Gir41}, for all t = {2,...7 —1}. By the
separability of §;; = 2zt + €;1, once we identify the distribution of (g;2,... g;7-1), we can identify
the distribution of (2. zir—1) given the observed data on (@a.. Jir—1), assuming that the
characteristic functions of £;_; do not vanish on the real line. Note that we need a panel with
T > 4 for identifying the Markovian process of productivity . With 7" > 4 we can identify
the join distribution of (22, 2;3) which in turn identify the conditional distribution of z;3 given
zin. If we assume that the productivity process is stationary we have identified the conditional
distribution of z; given z;_; for all t.

Step 3: Policy Functions Once we have identified B, §; and f(z; | ) we can identify
flar, k1| z1) and f (a1 | ze, a0, k) and f (ki | 20, ae, k) for all ¢ > 1 in a sequential way
starting with period 1 in a similar way as in Arellano et al. [2017].

Proposition 3. Identification of the Policy Functions. In a Cobb-Douglas production
function with Markovian Hicks neutral productivity as in equations (??)-(8), if assumption
(1), (2) and condition (1)(v) hold and f(z | ) is previously identified, then f(ai,k; | z1),
fagsr | ze,ae, ki) and f (kyer | 20, ag, ki) are identified for all t > 1.

Period 1
fla, k| 9) = /f(@hkl | 21,9) f (21| §) 21, (41)

by assumption 1, f (a1, k1 | z1,9) = f (a1, k1 | 21) equation (41) can be expressed as:

f(ar k| 5) = / fan by | 22) f (21 | §) don. (42)

Equation (42) can be rewritten as the following moment restriction:

flan, k| 9) = Elf (ar, ki | 21) | 9 = 7] (43)

where the expectation is taken with respect to the density of z;; given g; and for a fixed values
of a; and k;. Provided that the distribution of (z;; | 9;), which is identified from the production
function structure is complete, the unknown density f (aq,k; | z1) is identified from (43). The
density f (a1, k1,21 | 9) = f (a1, k1 | z1) f (21| §) is also identified.

Using Bayesian rule, we can identify the following density:

flay, ki, 20 | )
flay, k1] @)

f(z|ar,k,y) =

Period 2 Like the analysis in period 1, we can use assumption 1 to express f (az | a1, k1, 7)
as:

Flas | ay, b, ) = /f(az |z an k) f (21 | an, b, ) don (44)
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where f(as | a1,k1,9) = f (a2 | z1,a1,k1). Equation (44) can be rewritten in terms of the
following moment restriction:

flaz | ar, k) = E[f (a2 | 21,01, k1) [ an = ar, ki = kr,yi =y (45)
Equation (45) provides identification for f (as | 21, a1, k1) as long as f (z; | a1, k1, 9), which

is identified in period 1, is complete in g;). Note that f (as, 21 | a1, k1, y) is also identified.
Similarly, f (ks | 21,01, k1) (and consequently f (k2,21 | a1, k1,9)) is identified from

fka|ar,kr,g) = E[f (k2| 21,01, k1) | ain = a1, kix = k1, y; = ] (46)

Given assumption 1 f (ag, ko | z1,a1,k1) = f (ko | 21,01, k1) f (a2 | z1,a1, k1). Using Bayesian
rule and assumption 1 we recover f (21 | ag, ko, aq, k1) from:

f(zl ’ a’27k27a17k1)f<a27k2 ’ a’lukl)
[z | a1, k)

Given that f(z; | ag, ke, a1,k;) is identified from above, f (22 | 21) is identified from the
net-income process, and given assumption 1 we can identified: f(z9,21 | as, k2, a1,k1) =
f(z1| ag, ka,a1,k1) f (22| z1), which in turns allow us to identified f (22 | ag, ko, a1, k1,7) us-
ing Bayesian rule and given assumption 1:

~ f(g ’ 22721) f<22721 ‘ a27k27a17k1)
k k = d
f(Zz ’ A2, Ko, a1, 1,y) / 7 @ ‘ a2’k27a1’k1) 21

f(GQ,k’z | Zl>a1,k’1) =

Period 3 Using assumption 1 and assumption 2 we have:

f(as | az, koyar, k1, 7) = /f(as | 22,02, k2) [ (22| a2, ko, a1, k1, 7) dza (47)

Provided that f (29 | ag,ks, a1, k1,7), which is identified from above, is complete in
(ai1, ki1, 9), f(as| 22, a9, ke) is identified from 47. Analogously, f (k3 | 22, as, k2) is identified
from:

f(/f:s | a2,k2,a1,k1,ﬂ) = /f(kz \ Zz,a2,l€2)f(22 | a2,k2,al,k1,ﬂ) dz

Given assumption assumption 2 f (a;11 | zi, ap, k) and f (k1 | 2, ag, k) are
vided that for all ¢ > 1, the distribution of (z; | a, k!, ;) is complete in (a} ', k{~", ;).
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Appendix A.3: Stochastic EM Estimation Algorithm (SEM)

We adapt a stochastic EM algorithm to our production function framework to estimate the
nonlinear model with latent variables in Section 5.2. Let X[ = (y/ k7 ,iF,al,) and z] the

history of observables and productivity for firm 7, respectively. Given assumption 1, the full
model in Section 5.2 implies the following integrated moment restrictions:

i T ) _ K 9.9 (.. Lk ) 59 27
Zt:Q Q41 Zk:l ak(bk (Zzta ity Qit,s t)
2
S (i — Ay oo (zi0 ki i 8F)

E / Zle <lit B Z?:l O (zit, i, az’t)) f (ZzT | XiT7 9) d (48)
ZtT:1 (yit — Bilis — Brkir — Zit)2

Zthl <Zit - 211;1 apdp (zie— ))2
(0 = i, a0 ()

where f (ZZT | XT, 0) is the posterior density of the vector 2! given the data. The vector
0 = Qy,Qh,Hg,Hgl,Q”,Hﬂ contains all the parameters of the model in (??), 0¥ = [By, (1, 0],
o" = [[Oz? ooy, 09 = . o, 04), 07 = [of ... o, 0,). Note that (48) are the integrated
version of the unfeasible OLS regressions of the equations in (??). The OLS are unfeasible
because we do not observe z;.

The stochastic EM algorithm possesses computational advantages with respect to a maxi-
mum likelihood estimation of the model in Section 5.2, given that each policy function depends
on a considerable number of parameters. Therefore, rather than maximize the likelihood with
respect to a lot of parameters, our stochastic EM estimator iterates between simulating draws
from the posterior distribution of latent productivity given the data f (2] | X7,6) and OLS
estimations of the parameters in 6.%°

The two following steps describe our procedure. Starting with a parameter vector 6°, we it-
erate the following two steps on s = 0, 1, 2, ... until convergence of the #° process to a stationary
distribution:

1. Stochastic E-step: For each firm i, draw {zﬁ" ). ..z,}m)} M realizations of z! from

1
2

f (le | XT, 9). Using assumptions 1 and 2 we can express the posterior distribution of z;; as a

25For instance, if we specify our nonlinear functions as third-order polynomials, the model in Section 5.2
would contain more than 200 parameters to be estimated. If in addition we want to estimate policy functions
that include firm fixed effects that maximum likelihood estimation would be computationally infeasible.
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function of the likelihoods of the equations in (?77).

T
f (ZzT | XiT70) :Hf(yit | Kit, Lit, 2it, 07) X
t=1

T

Hf (iit | kit,zmait,@h) I it | Kty i, @i, 07) ¥
T

Hf(a'it | zit7kit7aitaeg) / (ail | Zilaegl) X

t=2

T

Hf(zit | zit-1,0%) f (201)
t=1

where f (i | kit, lit.zi,0Y) is the likelihood of the production function, f (iit | kl-t,zit,ait,ﬁh)
is the likelihood of the investment policy rule, f(asi1 | 2it, kit, @i, 09) is the likelihood of the
wealth policy rule and f (z; | zi—1, 6¥) is the likelihood of the productivity process. To simulate
f ( | X/, (9), we use a random-walk Metropolis-Hastings sampler, targeting an acceptance rate
of 0.3.

2. M-step: compute the integrated-OLS estimator of the parameters:

ZZ 1 Zt 1 Z <yzt Bilie — Brkis — Zi(zn)>2
2
Zz IZt 12 = <%t Zk | ) ( ztm) kit7ait75th>)
Zz 1Zt QZ <azt+1 Zk 10‘k¢g< " ztaazt>59>>2 (49)
2
Zizl thg Zm:l ( Zk it ( Zit— 1)) )
Zz‘N:1 25:1 Z%ﬂ (lit - Zk:1 Ry <Z§Z”), Kit, ait))

In practice, we stop the iterative procedure after S=500 iterations and check the convergence
of the estimates. In each iteration of the chain, we simulate 100 draws from step 1 (i.e., M=100).
We start the algorithm from different initial values (OP, LP, or Proxy-I1V) and get similar results.
The statistical properties of a similar stochastic algorithm have been studied in Nielsen et al.
[2000] in a likelihood context and in Arellano and Bonhomme [2016] in a GMM context where
the M-step consists of quantile-based regressions. Arellano and Bonhomme [2016] show that
the estimates of the stochastic EM algorithm for parametric models (where R does not grow
with the sample size) are asymptotically normally distributed as M and N tend to infinity (for
fixed R) with an asymptotic variance that is the asymptotic variance of the method-of-moments
estimator of the integrated moment restrictions. Our M-step, which consists of a set of OLS
regressions, can be framed in the GMM framework studied in Arellano and Bonhomme [2016].
Therefore, 6 has the following distribution as N and M go to infinity:

(

N(é—e) 4 N(0,%)
where X is the asymptotic variance of the GMM estimator of (48).
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Appendix A.4: Estimations using Simulated Data

We use an extended version of the stylized model presented in Section 2 to generate data that
is consistent with the theoretical framework that explicitly accounts for collateral constraints.
We use this data to provides a validation of our proposed empirical specification.

The spirit of the model and its theoretical implications are very similar to those of the model
presented in Section 2, although we generalize it in two dimensions. First, we no longer impose
linearity in preferences and assume a CRRA utility function with risk aversion coefficient o.?°
Second, we introduce adjustment costs to capital. We choose a standard quadratic function
with a parameter n determining its size.”” Note that the introduction of adjustment costs
implies that capital is a state variable, as in our empirical estimations.

We assume a specific functional form for the general collateral constraint described in Section
2:

K(Ai, Zit) = (A4 Ao(zie — 2)) At

where A and A, are constants, z; is the log of Z;; and Z its mean, and we impose A+, (min(z;;) —
z) > 1. Thus, for a given level of collateral, the capital to assets ratio is strictly increasing in
productivity.

In line with the estimates in Section 6.2, we set 8y = 0.43 and ; = 0.44 in the calibrated
model. This implies a span of control parameter of 0.87. In the case of the productivity process,
we impose a linear Markov process, z;11 = pz; + 1 and, consistent with our estimations, set
p = 0.82 and 0, = 0.42. We calibrate three key parameters to match certain moments of
the sample. These parameters define the strength of the collateral constraint (A and A,) and
determine the relevance of adjustment costs n. The moments we use to calibrate them are
the mean capital-to-output ratio, which is 1.69, the net assets-to-output ratio, which is 0.89,
and the correlation between productivity and the net assets-to-capital ratio is 0.3. For the rest
of the parameters, we use standard values: discount factor § = 0.8, risk aversion coefficient
o = 0.2, depreciation rate § = 0.1, and interest rate r = 4%.

We use the calibrated model to generate simulated data and use that data to replicate the
empirical estimations of the previous section.?®

Model simulations can also be used to explore how the biases of the production function
estimates vary with the intensity of financial frictions, i.e., with different values of the param-
eters governing the collateral constraint, A y A\,. For instance, when A\ decreases from 2.5 -the
value found in the calibrated version of the model- to 2, the OP bias in §; grows from 0.07 to
0.11, and the OP bias in S goes from -0.04 to -0.06. When we make collateral constraints more
severe through a change in )., the effects on OP are similar. When A\, goes from 0.5 -the value
found in the calibration- to 0, the biases for 3, y [, increase to 0.17 and -0.07, respectively.

26We remove the convex function g(-) included in Section 2, as it is no longer needed to have an interior
solution.

2TSpecifically we use n(I;;/Ki)? K;

Z8Following Ackerberg et al. [2015] we introduce iid shocks to wages. This generates extra variability on labor
that is not due to variation in the state variables, allowing us to identify §; in the first stage.
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Appendix A.5: Confidence Intervals

F1GURE 6: Confidence Intervals: Marginal effect of productivity and wealth on investment
Notes: The top panel exhibits the estimated derivative effect of productivity in the investment policy function
and its 95% confidence intervals using the proxy-IV approach. The figure displays how the effect changes along
different values of the stock of wealth and is evaluated at three different levels of stock of capital (10th, 50th,
and 90th percentile of the capital distribution). The bottom panel of the figure exhibits the estimated derivative
effect of the stock of wealth (previous wealth) in the investment policy function and its 95% confidence intervals
using the proxy-IV approach. The figure displays how the effect changes along different values of the stock of
wealth and is evaluated at three different levels of stock of capital (10th, 50th, and 90th percentile of the capital

distribution).

Oh/0z

Oh/da

ks

48



dg/0z
/
/
; i
!” //
/
|

dg/0a

FiGURE 7: Confidence Intervals: Marginal effect of productivity and wealth on wealth accu-
mulation

Notes: The top panel exhibits the estimated derivative effect of productivity in the wealth policy function and
its 95% confidence intervals using the proxy-IV approach. The figure displays how the effect changes along
different values of the stock of wealth and is evaluated at three different level of stock of capital (10th, 50th and
90th percentile of the capital distribution). The bottom panel of the figure exhibits the estimated derivative
effect of the stock of wealth (previous wealth) in the wealth policy function and its 95% confidence intervals
using the proxy-IV approach. The figure displays how the effect changes along different values of the stock of
wealth and is evaluated at three different level of stock of capital (10th, 50th and 90th percentile of the capital
distribution).
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FiGURE 8: Confidence Intervals: Investment and Wealth Accumulation propensities
Notes: The figure exhibits the 95% confidence intervals of the estimated derivative effect of productivity in the
investment and wealth policy functions using the SEM method.
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