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Abstract

We document near-exponential growth in the demand for artificial intelligence (AI)-related

skills in India’s services sector since 2016, using a new dataset of online vacancies from

its largest jobs website. This coincides with the take-off in developed countries, and is

driven by the largest firms and high-tech clusters. We evaluate the impact of demand for

AI skills on establishment-level non-AI postings, using a shift-share design that exploits

variation in exposure to new AI inventions. We find negative effects on posting volumes

and wage offers, particularly for highly skilled managerial and professional occupations,

non-routine work, and analytical and communication tasks.
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1 Introduction

Rapid advances in machine learning have spurred an intense debate about the labour market

consequences of artificial intelligence (AI).1 Online job adverts show that demand for AI-related

skills has grown almost exponentially and concurrently in several countries around the world

since 2015 (Figure 1.1). Yet detailed empirical evidence on the extent of AI deployment and its

distributional impacts remains scarce, particularly beyond a handful of advanced economies.

For low- and middle-income countries, the use cases and impacts of AI need not be the same as

for advanced economies. AI could have important consequences for their development trajectory,

especially for countries promoting services-led growth. In India, for example, many of the

services industries that have driven structural change, productivity growth and job creation,

such as Business Process Outsourcing (BPO), are highly exposed to machine learning-based

automation, raising questions over the future viability of a services-led development model and

its promise of promoting widespread prosperity.

In this paper, we aim to fill this knowledge gap by shedding light on the labour market

impacts of AI in India – the archetypical pioneer of a services-led development model. We

investigate these effects in the predominantly urban, white-collar services sector using a new

dataset of online job adverts posted from 2010 to 2019 on the country’s largest online jobs

platform. The platform has an estimated market share of around 60 percent of online job

postings in India. Following a growing literature including Rock (2019) and Acemoglu et al.

(2022), we use the demand for AI-related skills, as observed in the text of posted job descriptions,

as a proxy for AI deployment. The basic idea of this approach is that, in the absence of detailed

administrative data on firm-level AI adoption, we can induce the demand for AI by studying

which firms are hiring machine learning engineers, deep learning specialists and other related

staff.

Using the job adverts data, we first document several patterns in AI-related hiring in India.

We see a rapid take-off in the rate of ‘AI demand’ (shorthand for the demand for AI-related

skills in job posts) after 2016, albeit growing from a low base. AI demand increased from 0.37%

of all job vacancies in 2015 to 1.03% in 2019, coinciding with an increase in demand for specific

‘deep learning’ skills, along with ‘natural language processing’ to a lesser extent. Take-up

1To fix definitions, we consider artificial intelligence (AI) ‘the theory and development of computer systems
able to perform tasks normally requiring human intelligence, such as visual perception, speech recognition,
decision-making, and translation between languages’ (Oxford English Dictionary 2020). Machine Learning, the
sub-field responsible for many of the recent commercial applications of AI, comprises ‘the statistical techniques
that enable computers and algorithms to learn, predict and perform tasks from large amounts of data without
being explicitly programmed’ (Acemoglu & Restrepo 2019). We henceforth use ‘AI’ as an umbrella term
encompassing machine learning.
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Figure 1.1: AI share of online job postings, by country

Notes: This graph shows the share of all online vacancies that specify particular AI skills, with these skills defined as described in

the text. Data for India is that used in this paper; data for all other countries is from Lightcast, which does not cover India.

is particularly pronounced in the IT, finance and professional services industries. AI roles

tend to require substantially more education, particularly graduate degrees, while also paying

significantly higher wages. Even after controlling for a host of fixed effects, posts demanding AI

skills still pay a 13-17% salary premium, which is similar to the 11% estimate found in the US

(Alekseeva et al. 2020). Consistent with Babina et al. (2021) and Zolas et al. (2021), we show

that AI roles are heavily concentrated in the largest firms and a few key technology clusters –

particularly Bangalore, Mumbai, Hyderabad, Pune, Chennai and Delhi. In line with this spatial

clustering, we find evidence of local agglomeration in diffusion: after the first firm posts an

advert demanding AI skills in a given industry and region, other firms in the same industry and

region are, on average, more likely to start demanding AI skills, even after taking into account

industry and region trends.

We then turn to evaluating the impact of demand for AI skills on labour demand within

‘establishments’, defined as firm-city pairs. The theoretical impact of AI on labour demand

is ambiguous. Advances in machine learning have been conceptualised in the literature as

reducing the cost, or improving the quality, of the task of ‘prediction’, which is prevalent in many

occupations (Agrawal et al. 2018).2 While this implies displacement of labour, improvements

2For example, a back office employee of a multinational bank takes the input of scrawled handwriting on a
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in the task of prediction could also expand labour demand by reducing costs or increasing

quality of production, and hence raising productivity.3 In addition, AI could complement human

labour, create new tasks or incentivise changes in organisational structure; there is growing

evidence that AI is a general-purpose technology (GPT), an ‘invention of a method of invention’

(Brynjolfsson et al. 2017, Cockburn et al. 2018, Klinger et al. 2018, Agrawal et al. 2021, Goldfarb

et al. 2023).4 Emerging economies like India could also stand to benefit from new AI value

chains, capitalising on their technical engineering workforce and comparative advantage in IT

outsourcing (Baldwin & Forslid 2020). Indeed, revenues in India’s BPO sector nearly tripled

over the past ten years (NASSCOM 2018).

Using a long difference specification between 2010-12 and 2017-19, we investigate the effects

of growth in the demand for AI skills on the growth of non-AI job postings and wage offers at the

establishment level. To isolate the impact of AI demand, rather than AI production, we exclude

AI ‘producing’ sectors from our analysis – specifically IT and education, which are responsible

for the vast majority of AI patents (Klinger et al. 2020). We exploit establishment-level variation

in their workforce’s compatibility in 2010 with future capabilities of AI, as measured by the

occupation-level AI exposure measure of Webb (2020). This measure captures the degree of

overlap between occupations’ tasks and the tasks that patented AI technologies are designed to

perform. We combine these occupational AI ‘shocks’ with the establishment-level occupation

vacancy shares at baseline and then use the combined shift-share measure as an instrument for

the demand for AI skills. The key idea behind this instrument is that firms in 2010 with a high

share of workers conducting tasks that later become feasible to automate with AI, such as civil

engineers or actuaries, are more likely to start deploying AI and thus hire new staff with AI

skills.

In the first stage, we find that establishments more exposed to AI ex ante do indeed see a

relative increase in their demand for AI skills in online vacancy posts. Turning to the second

stage, growth in AI demand has a significant negative effect on growth in non-AI and total

postings at the establishment level. A 1% increase in the AI vacancy growth rate results in a

3.61 percentage point decrease in establishment non-AI vacancy growth between 2010-12 and

mortgage application form and then generates the correctly spelled name of the applicant as predicted output.
3Some early research has therefore modelled machine learning in a comparable way to other forms of

automation, such as industrial robots (e.g. Webb (2020) and Acemoglu et al. (2022)). These papers build on
the canonical framework of Acemoglu & Restrepo (2018) in which task structure determines adoption. Beyond
the boundary of the adopting firm, AI could also have broader indirect effects, as workers reallocate across
occupations – as explored in detail by Humlum (2019) in the case of robots. Here we focus on direct within-firm
effects.

4Specifically, GPTs are widely used across sectors; have inherent potential for technical improvement; and
spawn further innovation in application sectors (Bresnahan & Trajtenberg 1995).
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2017-19, controlling for region, industry and firm size fixed effects. Growth in total establishment

vacancies (AI plus non-AI job postings) falls by a similar 3.57 percentage points, reflecting that

the increase within the small set of AI posts is far outweighed by the displacement effect in the

larger set of non-AI vacancies.

These negative effects on vacancy growth are most pronounced for higher-skilled professional

and managerial occupations, notably engineering professionals and general and corporate

managers. Using the seminal classification of Autor et al. (2003), we find that AI lowers

demand for occupations that are typically non-routine task intensive, in contrast to previous

recent waves of technological change that lowered demand for routine tasks. The negative

impact on non-routine task-intensive occupations holds both overall and within the affected

managerial and professional occupation groupings. We find similar negative impacts within and

between occupation groups for ‘abstract’ task intensity, as defined in Autor & Dorn (2013). We

additionally adopt a more granular and flexible approach to measuring task content, following

Michaels et al. (2018) by counting verbs in job descriptions and classifying them according to

meaning using Roget’s Thesaurus. We find that AI adoption reduces demand for verbs related

to ‘intellectual faculties’. In particular, there is a reduction in the frequency of verbs related to:

‘precursory conditions’, such as investigate, scrutinize, research, explore, examine; ‘extension of

thought’, such as predict, forecast, anticipate, memorize, recall; and those related to ‘means

of communicating ideas’, such as narrate or describe. The same also holds within the highest

paying roles.

How does this displacement affect wage offers for new hires? We estimate that a 1% higher

growth rate in AI vacancies reduces the growth rate of non-AI median wage offers by 2.6

percentage points between 2010-12 and 2017-19, instrumenting with AI exposure and controlling

for region, industry and firm size. As with vacancy growth, the negative effects of AI demand

on wage offer growth are also present when considering all posts, inclusive of AI vacancies. The

decline in average wage growth primarily reflects the changing occupational composition as the

relative frequency of skilled managerial jobs declines. When controlling for occupation shares,

we find that only the top 1% of wages at baseline see a statistically significant decrease in wage

offer growth.

We next check the impact of hiring AI-related skills in the years immediately after AI hiring

starts, using an event-study design combined with propensity score matching. Following Koch

et al. (2021), we match AI adopters to never adopters. Specifically, we run a probit regression

and construct propensity scores, such that conditional on these, treatment is orthogonal

to establishment characteristics. We then run an event study with a balanced panel and
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establishment and year fixed effects. We find a significant negative effect of AI adoption on the

demand for non-AI workers in the first year after adoption, which further increases in magnitude

over the following two years.

Finally, we investigate wider effects beyond establishments by aggregating the online vacancies

dataset to the district level and using data from administrative labour force survey datasets –

the National Sample Survey and Periodic Labour Force Survey – on employment and wages.

We run the same long-difference instrumental variables and propensity score matching event

study specifications at the district level. When we do so, we find no statistically significant

effects of AI demand on total hiring or employment at the district level in the short or medium

term and only weak negative effects on wages in the medium term.

Taken together, these results suggest that the demand for AI-related skills has already had

important effects on Indian service sector firms, altering the distribution of demand and wage

offers across occupations and tasks. However, the limited district-level results could reflect that

either negative within-establishment effects in AI ‘using’ industries are offset by hiring growth

in new or AI ‘producing’ firms in the same district, or that growth in AI demand is not yet

large enough to impact the wider economy.

This paper makes several contributions to the literature documenting the diffusion of AI

and its impacts. First, we offer new insights on the distributional impacts of AI – as proxied

through the demand for machine learning – on labour demand and wages, with a particularly

granular perspective on the types of jobs affected. Although India has a different labour market

structure to high-income countries, our findings of negative within-establishment effects of AI

echo those of Grennan & Michaely (2020) and Acemoglu et al. (2022) for the US. Our findings

that these effects are driven by higher-skilled occupations, including engineers and verbs relating

to analytical tasks, are also consistent with US evidence from Grennan & Michaely (2020) and

Webb (2020). The remarkably similar patterns may reflect our focus on a subset of the Indian

labour force: the white collar and largely urban services sector where we would expect the

highest demand for machine learning. However, our findings challenge the result by Acemoglu

et al. (2022) that AI exposure predicts increased demand for skill families relating to engineering,

analysis, marketing, finance and IT in the US, although they do not examine actual impacts

by occupation or skill level. Our evidence that AI negatively affects non-routine task intensive

occupations also stands in contrast to findings for previous waves of technological change that

were shown to lower demand for routine task intensive occupations (for instance, Autor et al.

2003, Goos & Manning 2007, Goos et al. 2014).

Second, discussions about the impact of AI for development have been largely theoretical to
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date, so this paper starts to bridge the evidence gap on the consequences of AI adoption for

low- and middle-income countries. For instance, Baldwin (2019) and Baldwin & Forslid (2020)

have conjectured that machine learning, along with online platforms and software robots, could

benefit developing countries by increasing offshoring of services. Korinek & Stiglitz (2021) take

an alternative view that developing countries will be negatively affected, because AI devalues

their comparative advantage in lower-cost labour and natural resources. Nevertheless, it remains

to be seen whether AI has even been deployed within emerging economies. We focus on the

domestic angle to these broader questions and show that the growth in the demand for AI skills

within India has been remarkably similar, and even more rapid, to that documented in advanced

economies. India experienced a similar take-off around 2016, highlighting the global diffusion

in AI. Our finding that the demand for AI skills has rapidly grown in professional services

could be consistent with a rise in outsourcing of AI work to India. However, while the negative

impacts of AI demand on higher skilled jobs could be an equalising force on the labour market

in the short term, it remains to be seen whether these effects reflect temporary transition costs

associated with new technological adoption or whether they could have perverse longer-term

implications. Our negative findings also only concern within-firm effects for incumbent firms and

within ‘AI-using’ industries. Avenues for future research include assessing potentially offsetting

effects, such as through firm creation or in ‘AI-producing’ industries, particularly IT.

Finally, our paper adds to a growing literature which uses online vacancy postings to

investigate labour market effects more broadly (e.g. Deming & Kahn 2018, Adams et al. 2020,

Javorcik et al. 2020). We contribute through a large new dataset of job postings in India,

stretching back to 2010.

The rest of this paper proceeds as follows. Section 2 introduces the data, and Section 3

presents detailed descriptives on AI demand in the Indian white-collar services sector. Section 4

lays out our our empirical approach, and Section 5 presents our main findings on the impact of

AI adoption in hiring on non-AI labour demand and wage offers. Section 6 provides extensions

and robustness checks, including the short-term impacts of AI adoption and effects beyond the

establishment level. Section 7 concludes. The online appendix provides further detail on the

construction of our dataset, additional descriptives and results, and further robustness checks.
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2 Data

2.1 Vacancy data

Our primary dataset is vacancy data posted on India’s largest online job platform between 2010

and 2019.5 The site serves primarily as an advertising platform for firms to post vacancies, with

subsequent recruitment and hiring processes taking place directly with firms. The platform

estimates that they had approximately 60 percent of the market share of Indian online job

vacancies in 2020. They shared a randomly-selected 80 percent of all posts over the period 2010

to 2019. We focus on the services sector, for which the data is most representative of overall job

vacancies, dropping posts from the manufacturing and agriculture sectors. Our primary dataset

hence includes data from around 15.5 million service sector job postings, equating to roughly

1.5 million per year, but skewed towards later years. This compares to an estimated 19 million

people formally employed in the service sector in India in 2021, as published by the Ministry of

Labour and Employment.6

When submitting a vacancy on the platform, firms are required to upload information into

a standardised template. Hence, all posts include information on the job title, industry, role

category, location, skills required, salary and experience ranges and educational requirements.

The job postings also include an open text section for the job description. We manually map

industries and occupations into the National Industrial Classification (NIC) at the two-digit

level and National Classification of Occupations (NCO) at the four-digit level, covering 99%

of all vacancies. We also harmonise city names and add geolocations, separating out overseas

job postings. Using the geolocations, we match cities to districts using the 2011 census. Firm

names are removed for client anonymity but replaced with a consistent panel identifier.7

The two key advantages of the vacancy data relative to administrative datasets are its

breadth and detail. In 2018, the vacancy data includes more than two million services vacancies

from 40,000 unique firms, compared to 12,000 workers directly surveyed in the 2017-18 Periodic

Labour Force Survey and 2,000 firms recorded in Prowess.8 The representative sample surveys

only took place in 2011-12 and 2017-18, so provide no information on short-term fluctuations or

more recent developments in the Indian services sector. Prowess, while useful for studying the

largest firms, only contains a limited selection. Our vacancy dataset has roughly 30 times as

5The company requested to remain undisclosed.
6https://static.pib.gov.in/WriteReadData/specificdocs/documents/2022/jan/doc20221104101.pdf
7We also focus on full-time jobs and so drop the small number of part-time and non-permanent positions

from our sample.
8Full observation totals by sector and dataset are shown in Appendix Table A.1.
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many firms as Prowess (see Appendix Figure A.2), and neither Prowess nor the labour surveys

offer a way to measure AI adoption, whereas we can directly observe the demand for AI skills in

the text of online job descriptions.

However, this richness of the vacancy data also comes with certain shortcomings, notably that

online vacancies are not representative of all vacancies and online job postings only proxy for firm

hiring behavior. Broadly speaking, our vacancy data best represents urban, white-collar service

sector jobs. We provide a detailed overview of the coverage and representativeness of the data in

Appendix A.2, where we benchmark the vacancy data relative to nationally-representative labour

surveys and firm-level data from Prowess. Compared to the administrative data, the vacancy

data has a higher share in the IT & BPO, Finance, Insurance and Real Estate, Professional and

Business Services industries, and they are under-representative of all other industries. Vacancies

posted on the site are disproportionately concentrated in urban centres, but at least one post

appears for nearly every district in India.9 Although the share of formal jobs is lower in India

compared to advanced economies, we find a ratio of 0.08 of annual average job postings to

total formal employment, which is similar to the ratio of approximately 0.09 for annual US job

postings from Burning Glass Technologies relative to total US employment from 2010-2018 as

reported in Acemoglu et al. (2022).

2.2 Measuring AI demand

Despite the prominence of the topic of AI in popular discussion, firm-level data on AI adoption

remains scarce (for instance, see the discussion in Raj & Seamans 2018). In the absence

of data on the adoption of specific technologies, a growing body of work has started using

technology-related human capital to proxy for technology adoption. For example, Rock (2019)

and Benzell et al. (2019) use LinkedIn profiles to construct firm-level measures of engineering

and IT talent, while Harrigan et al. (2020) use the firm-level employment share of ‘technology

workers’ in French matched worker-firm data as a measure of technology adoption.

Human capital is one of the key inputs for deploying an AI system. It is well recognised that

one of the primary obstacles to widespread adoption of AI is the available labour supply, with

top-tier scientists earning extremely high salaries and being bought out of academic positions. It

would be expected that firms wishing to implement an AI-driven automation project would, at

least to some degree, need to hire individuals with AI skills or experience. Alternative options

would be to rely on external consultants, contract out the process to a third party software

9See Appendix Figure B.2 for the detailed geographical distribution of posts.
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provider or retrain existing staff to develop AI skills.

There are a number of reasons to believe that the dominant channel is external hiring. Work

by McKinsey Global Institute (2019) surveying around 2000 companies globally found that the

primary method for sourcing AI talent and capabilities was to hire externally and that the

majority of companies built their AI capabilities in house, as opposed to buying or licensing

capabilities from large technology companies. Additionally, even if firms were to subcontract

AI services, it would be expected that they would still require at least some related human

capital in-house to oversee and manage the process. We therefore assume that AI skills demand

and actual AI deployment within a firm will be positively correlated and follow this emerging

literature in using the demand for AI skills as a proxy for the extent of AI adoption within firms.

Online job vacancy data are well suited to the measurement of demand for very specific

technology-related human capital owing to the detailed text data on the skills demanded for

specific roles. To measure firm demand for AI skills, we classify job postings based on the text

in the job description or skills requirements. Our main classification is the ‘narrow’ measure

employed by Acemoglu et al. (2022), which categorises a post as an AI vacancy if it includes

any word from a list of specific AI terms.10 By using this narrow measure of AI skills, we reduce

measurement error, although our estimates of demand for AI skills are likely to be a lower bound

of the true level of adoption.

2.3 Verb categorisation

In addition to measuring actual AI-related terms, we also follow Michaels et al. (2018) in using

verbs mentioned in the text of job adverts as a proxy for task demand. We use the same list of

1,665 English verbs and the meaning of verbs from Roget’s Thesaurus, which classifies words

according to their underlying concepts and meanings. The Thesaurus is organized into 6 classes

and 38 sections. The 6 classes are: Abstract Relations (ideas such as number, order and time);

Space (movement, shapes and sizes); Matter (the physical world and humankind’s perception

of it by means of the five senses); Intellect (the human mind); Volition (the human will); and

Emotion, Religion, and Morality (the human heart and soul). More details can be found in

10Specifically, a post is categorised as AI-related if any of the following terms appear in either the ‘job
description’ or ‘skills required’ fields: Machine Learning, Computer Vision, Machine Vision, Deep Learning,
Virtual Agents, Image Recognition, Natural Language Processing, Speech Recognition, Pattern Recognition,
Object Recognition, Neural Networks, AI ChatBot, Supervised Learning, Text Mining, Support Vector Machines,
Unsupervised Learning, Image Processing, Mahout, Recommender Systems, Support Vector Machines (SVM),
Random Forests, Latent Semantic Analysis, Sentiment Analysis / Opinion Mining, Latent Dirichlet Allocation,
Predictive Models, Kernel Methods, Keras, Gradient boosting, OpenCV, Xgboost, Libsvm, Word2Vec, Chatbot,
Machine Translation and Sentiment Classification.
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Michaels et al. (2018).

3 Demand for AI Skills

In this section, we present six descriptive findings about the demand for AI skills in the Indian

white-collar services sector, based on our job postings data.

1. AI demand increased rapidly after 2016, particularly in the the IT, finance,

education and professional services sectors.

The rate of demand for AI skills increased rapidly after 2016, rising from 0.37% of all job

vacancies in 2015 to 1.03% in 2019. Figure 3.1 Panel (a) shows the share of posts that are

tagged as AI posts and the top five AI-related phrases which appear. Panel (b) shows the share

of AI posts over time and within the top five industries by AI share. Overall we see steady

growth from our base year of 2010, which accelerates after 2016, especially in financial services

and IT and software. This growth is driven largely by demand for general ‘machine learning’,

with the sub-field ‘deep learning’ rising rapidly from relative obscurity to being the second most

common AI term from 2017 onwards.11

Figure 3.1: Trends in AI demand

(a) Most demanded AI skills (b) AI share of posts, by industry

Notes: Panel (a) shows the share of all vacancies that specify particular AI skills, for the top five most demanded skills. Panel (b)

shows the share of vacancies that are AI vacancies, both for all industries together and within each of the top five industries by AI

share.

The breakdown of demand for AI skills across sectors is also striking, suggesting a wider

11For discussion of possible causes of the rapid acceleration, such as the open-source release of Google’s
TensorFlow software library in 2015, see Stapleton & O’Kane (2020).
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diffusion of AI beyond AI-producing sectors. AI demand grew steadily in the IT sector since

2011, whereas AI demand in the financial sector started from a low base then grew ten-fold

between 2016 and 2018. In contrast, the business process outsourcing and call centre sector saw

a small boom in AI demand in earlier years, corresponding to a spike in demand for ‘speech

recognition’, before returning to a lower share.

2. AI roles require more education and offer substantially higher wages than

other white-collar services jobs.

What are these AI roles, and how do they compare to the rest of the vacancies advertised? By

far the most common AI role title is ‘Software Developer’, followed by other technical roles

such as ‘Data Analyst’, ‘Technical Lead’ and ‘Technical Architect’ (Appendix Figure B.6). AI

skills are also required in technical management roles, with titles as ‘Analytics Manager’, ‘VP -

Analytics and BI’, and ‘Project Manager-IT/Software’ also appearing in the top 20 AI-related

roles. Yet there is also a long tail of more generalist roles, including ‘Business Analyst’, ‘Trainee’,

‘Program Manager’ and ‘Product Manager’. The size of the ‘Other’ category grouping all other

vacancy posts (25%) indicates how widespread the hiring of AI skills is across multiple job titles,

albeit each with a small share of overall posts.

Moreover, we see that AI-hiring firms are seeking candidates who are slightly more expe-

rienced and substantially more educated than average – and for that they are willing to pay

a substantial salary premium (Figure 3.2). AI vacancies are almost twice as likely as non-AI

vacancies to require a master’s degree, and more than seven times more likely to require a

doctorate. They post a median salary of |250,000 (approximately US$3,333, without adjusting

for PPP), twice the median non-AI salary of |125,000 (US$1,666). This ‘AI wage premium’

remains high (19%) even when controlling for experience, education and firm fixed effects.12

Even when adding occupation or role fixed effects, to control for AI being used in different types

of jobs, a premium of 13-17% remains.13

3. AI roles are highly concentrated in a few key technology clusters, particularly

Bangalore.

AI demand is highly concentrated in large cities, particularly the major technology clusters

12See Models (1) and (2) of Appendix Table B.3 in Appendix B.
13See Models (3) and (4) of Appendix Table B.3 in Appendix B.
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Figure 3.2: Hiring profile of AI vs. non-AI vacancies

(a) Years of experience (b) Education level (c) Salary (Rupees)

Notes: These graphs compare the distribution of posts, for AI and non-AI vacancies, across experience, education and salary. This

information is reported directly in the online jobs platform. For experience and salary, the vacancy posts record a minimum and

maximum value, so we take the midpoint of the specified range. AI posts are classified based on keywords, as described in Section

2.2.

around Bangalore, Mumbai, Hyderabad and Delhi. Bangalore alone has more than 30% of all

AI vacancies across India. Figure 3.3 compares cities’ shares of all posts with their shares of AI

posts. AI shares at the top end are larger than general post shares, showing that AI vacancies

are even more spatially concentrated than vacancies generally. Shares of AI demand in cities

have been remarkably constant over the last decade, except for a prominent increase in AI

activity in Mumbai as AI demand took off in the financial sector.14

4. AI roles are highly concentrated in the largest firms.

Which firms hire AI skills? We proxy for firm size by the number of vacancies posted on the

platform. Figure 3.4 plots the cumulative share of AI posts against the corresponding cumulative

share of all posts. This traces out a Lorenz-type curve, where the deviation from the 45◦ line

shows the extent to which AI vacancies are disproportionately posted by the largest firms.

Inspecting the top right corner reveals that the largest 14 firms are responsible for 10% of all

14See Appendix Figure B.4 in Appendix B for the change over time in the distribution of AI posts across
cities.
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Figure 3.3: Shares of posts across cities

Notes: Bars show the shares of all posts and AI posts

across cities, for the entire period 2010 to 2019.

Figure 3.4: AI posts by firm size

Notes: We plot the cumulative share of AI posts against the corre-

sponding cumulative share of all posts, for the whole period 2010-2019.

The red 45◦ line indicates a one-for-one increase in the share of AI

posts relative to all posts. The deviation of our scatter plot from the

45◦ line shows the extent to which AI vacancies are disproportionately

posted by the largest firms.

vacancies, with each posting at least 50,000 vacancies, and these account for 31% of all AI posts.

While there are some smaller firms that post a disproportionate number of AI posts, the largest

AI-hiring firms are also the largest hirers in general. AI posts are also more concentrated than

other vacancies in each individual year, with this excess concentration increasing rapidly from

2015.15 The take-off in AI demand in Figure 3.1 thus coincided with increased concentration in

the hiring of AI skills.

5. Initial AI adoption is associated with agglomeration in AI demand, over and

above industry and region trends, particularly in the IT sector.

How does AI diffuse across industries and cities? The vast majority of industry-city pairs had

zero AI posts at the start of our period, so we can examine the correlation between the first AI

post in a given city and industry and subsequent hiring by other local establishments. We first

construct the difference between the current time and adoption of AI for each industry-city pair,

Kirt. We then construct the outcome AI shareirt,−F by pooling all posts in the industry-city

except those from the first adopter F . We then run the event study specification at the level of

15See Appendix Figure B.7 in Appendix B, which plots the trends in the Herfindahl Index for AI and non-AI
vacancies over time.
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Figure 3.5: Local AI diffusion

Notes: We plot the change in the industry-city-wise share of vacancies that

are AI vacancies, for years before and after the first adoption of AI in an

industry-city pair. AI posts by the initial AI adopter are excluded to focus

on diffusion of AI posting to other firms in the industry-city pair.

Table 3.1: Verbs in AI posts

Less common More common

1 Call Experience
2 Manage Develop
3 Shift Build
4 Plan Program
5 Account Design
6 Tar Work
7 Look Predict
8 Recruit Deliver
9 Apply Use
10 Report Advance

Notes: We count verbs in job descriptions of AI and

non-AI job posts and form verb shares. This table

shows the verbs with the largest difference in shares

between AI and non-AI job posts. Positive (negative)

differences imply that the corresponding verbs are

more (less) likely to be included in AI posts.

industry-city pairs ir with two leads and lags:

AI shareirt,−F = αir + αit + αrt +
2∑

k=−2\−1

βk · 1(Kit = k) + ϵirt. (3.1)

This gives the descriptive coefficients βk, which reflect the average percentage point increase in

the AI share of vacancies posted in each year k years from first adoption of AI in the city-industry

pair. Crucially, this association is that which remains even after controlling for the broader

industry- and city-level trends.

We find that there is a significant positive relationship between initial AI adoption and the

share of AI postings by other local firms in subsequent years (Figure 3.5). In the first year after

the first AI post within an industry and city, the AI share is more than 0.2 percentage points

higher (p = 0.042) than that in the absence of an AI adopter. This is a substantial difference

considering that the average AI share of posts across all industries was only 1% by 2019 (see

Figure 3.1). We also investigate heterogeneity in the diffusion of AI adoption across industries,

and find substantial dispersion in the magnitude of the local effect, with by far the strongest

relationship in IT and Software.16 We conclude that while local influence can be relevant for AI

diffusion, its importance varies substantially across industries.

6. AI job postings include more complex, creative, and data-driven tasks.

16Specifically, we estimate separate βs across industries by interacting 1(Kit = k) in equation 3.1 with industry
dummies. Results are shown in Appendix Figure B.8 in Appendix B.
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How do AI jobs differ from non-AI jobs using verbs in the text of job descriptions? Extracting

the verbs in AI and non-AI jobs ads using Roget’s Thesaurus, we calculate the share of each

verb relative to all verbs, and compare verb shares in AI job posts to non-AI job posts. Table

3.1 suggests that AI jobs contain a higher share of complex tasks (e.g. experience and advance),

creative tasks (e.g develop, design and experience), and data-driven tasks (e.g program and

predict).

4 Empirical Approach

Our main specification assesses the impact of increased AI demand on the change in non-AI

demand between our baseline period (2010 to 2012) and our endline period (2017 to 2019) –

spanning the take-off in AI demand in 2016.17 We take a long-difference approach common in

the automation and labour markets literature to ensure effects do not merely reflect short-term

fluctuations in labour demand. Our primary unit of analysis is ‘establishments’, defined as

firm-city pairs, which we use because many firms report postings in several different cities.

Our main estimation sample therefore contains almost 25,000 establishments together posting

approximately two million vacancies on the platform within our baseline and endline periods.18

We run:

∆yfr,t−t0 = β ·∆Adoptionfr,t−t0 + αr + αi + αf10 + ϵfr,t−t0 , (4.1)

where ∆yfr,t−t0 is the change in the inverse hyperbolic sine of outcome Yfr between 2010-2012

and 2017-19; ∆Adoptionfr,t−t0 is the change in the inverse hyperbolic sine of the number of

AI posts by an establishment between 2010-12 and 2017-19; αi and αr are two-digit industry

and city fixed effects; and αf10 is a firm decile fixed effect, where firm deciles are calculated

over the baseline period 2010-2012. We cluster standard errors at the firm level to account for

common shocks across establishments within the same parent firm. The key variables ∆yfr,t−t0

and ∆Adoptionfr,t−t0 hence approximate the growth in establishment outcomes and AI demand

17We pool within these periods in order to improve precision and maximise the probability that a firm
advertises on the job postings platform during both time periods.

18By definition, these establishments are part of relatively large, incumbent firms – as they existed already in
2010-12, and were still operational in 2017-19. We focus on this sub-set of all establishments to allow us to assess
the medium-run establishment-level impacts of AI, recognizing that other channels (such as new AI-focused
startups beginning in the mid-2010s) will also impact aggregate labour market outcomes. We discuss these
potential channels further in Section 7.
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between 2010-12 and 2017-19.19 The coefficient of interest β then approximates the elasticity

of each outcome with respect to AI demand: increasing the growth rate of AI demand by 1%

between 2010-12 and 2017-19 generates a β percentage point rise in the growth rate of the

outcome variable across the same time period.

AI demand is likely to be endogenous with respect to establishment-level outcomes.20 We

therefore instrument AI demand with ‘AI exposure’ to isolate changes in AI adoption resulting

from supply-side technical advances in the capabilities of AI. Specifically, we first take the

occupation-level AI exposure measure developed by Webb (2020), which measures the extent to

which workers’ tasks can be performed by AI technologies using the degree of overlap between

the text of AI patents and the text of O*NET job-task descriptions.21 Occupations with a

higher share of tasks that are capable of automation by AI are assigned a higher exposure value.

We use publicly-available crosswalks to map the Webb (2020) exposure measure to the Indian

National Classification of Occupations (NCO) 2004 at the four-digit level. We then aggregate

this measure to the establishment level by weighting across baseline establishment occupation

shares, to capture establishment-wise exposure to AI-based automation.22 Specifically, we

calculate:

Exposurefr,t0 =
∑
o

PostSharet0fro ·WebbExposureo (4.2)

where o represents occupations. We then standardize Exposurefr,t0 to have a mean of zero and

a standard-deviation of one, and estimate the first stage:

∆Adoptionfr,t−t0 = γ · Exposurefr,t0 + αr + αi + αf10 + ϵfr,t−t0 , (4.3)

The first stage coefficient γ in Equation 4.3 therefore approximates the proportional change in

AI posts between 2010-12 and 2017-19 that is associated with a one standard deviation rise in

establishment-wise AI exposure.

The establishment-level exposure variables are thus constructed in the shift-share or Bartik

19Mathematically, for growth rate g defined by Yt = (1+g)Yt0 , and using the approximations that ln(1+g) ≈ g
for small g and that lnYt−lnYt0 ≈ arcsinhYt−arcsinhYt0 , we have g = lnYt−lnYt0 = arcsinhYt−arcsinhYt0 =
∆yt−t0 .

20For example, more innovative managers are more likely to hire more AI workers, but they are also more
productive and grow the business more quickly, hence also increasing non-AI labour demand.

21These task descriptions are based on US occupations. While Indian occupations in general may have very
different task compositions, the white-collar service sector is likely to be more similar. To the extent that this is
not the case, it would also merely count against the strength of our first stage.

22Appendix Figure B.9 in Appendix B shows the distribution of exposure scores across occupation-wise wage
offer percentiles. This reveals that AI exposure rises with wage offers up to a peak around the 80th percentile,
before falling thereafter.
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(1991) style. Here the ‘shares’ are establishment posting shares by occupation in 2010-12, and

the ‘shocks’ are occupation varying measures of exposure to AI patents. Recent literature

(e.g. Borusyak, Hull & Jaravel (2021), Goldsmith-Pinkham et al. (2020)) has pointed to the

conditions under which shift-share instruments are valid. In our setup, we view the case for

causal identification as stemming primarily from the plausible exogeneity of the baseline posting

shares. Following Goldsmith-Pinkham et al. (2020) we provide several robustness checks to test

the validity of this instrument discussed in Section 6 below and Appendix C.1.

We also note that India is not a significant producer of new AI research and lags far

behind other major AI research hubs on per capita terms, predominantly the USA, China

and Singapore.23 We therefore do not expect advances in AI patenting globally to be affected

by hiring patterns in Indian firms, meaning our shocks could be plausibly exogenous as well.

Nevertheless, to ensure that our results are not affected by growth in AI demand in India

affecting global patents, in our non-descriptive analysis we also follow Acemoglu et al. (2022) in

excluding vacancy posts from AI-producing sectors in order to focus on AI-demanding sectors.24

Turning to the relevance of the instrument, we find that AI exposure does indeed predict

AI demand. A one standard deviation higher establishment AI exposure score is associated

with a significant 1.93% increase (p<0.01) in the number of AI vacancies between 2010-12 and

2017-19, after controlling for region, industry and firm decile fixed effects.25 This relationship is

illustrated in Figure 4.1 Panel (a), while Panel (b) confirms that this differential appeared at

the same time that machine learning techniques became widely used. For instance, the AI share

of vacancies posted by the most exposed quintile of establishments was relatively similar until

2016, before rapidly diverging to reach almost 8% in 2018.

23Despite strengths in applied computer science and engineering, India is not a significant producer of new
AI patents (Perrault et al. 2019). Appendix Figure B.5 in Appendix B ranks each country on a wide range of
AI progress metrics. In terms of the number of AI patents, the USA is dominant, while the USA, China and
Singapore are all significant producers of AI conference papers and journal articles.

24Specifically, we drop education, IT, internet and e-commerce, telecom and internet service providers, which
make up 34.8% of the sample.

25Full results are provided in Appendix Table B.4 in the Appendix.
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Figure 4.1: Impact of AI exposure on the AI share of establishments’ posts

(a) Long differenced AI share vs. exposure (b) Annual AI share by exposure quintile

Notes: These graphs show the relationship between AI exposure and the AI share of establishments’ posts. The binned scatter plot

in (a) summarizes the relationship between baseline AI exposure and establishments’ change in AI vacancy share between 2010-12

and 2017-19, after partialling out region, industry and firm-decile fixed effects. Panel (b) plots the time variation in this relationship,

using an inverse hyperbolic sine scale for the y-axis.

5 Main Results

5.1 Impacts of AI on labour demand

We now turn to the second stage to examine the effects of AI demand on non-AI vacancies.

Table 5.1 shows the impact of faster growth in AI vacancies on the growth of non-AI vacancies

and total vacancies, instrumenting with the Webb (2020) AI exposure measure.26 The growth

in AI demand reduces the growth in non-AI demand: in our main specification with region,

industry and firm-decile fixed effects, a 1% increase in the growth rate of AI vacancies results in

a 3.6 percentage point decrease (p<0.01) in non-AI vacancy growth at the establishment level

between 2010-12 and 2017-19. There is a similarly sized decrease of 3.57 percentage points in

the growth rate of total vacancies, highlighting that AI vacancies crowd out other white-collar

services-sector vacancies. We find that the median growth rate in total and non-AI vacancies is

24.9%27.

26 To avoid spurious correlation, we use the number of AI posts, rather than the share. For instance, regressing
total posts on the AI share would likely have a mechanical negative relationship, as demand shocks for non-AI
workers would affect both the denominator of AI share and the outcome variable.

27Appendix Figure B.10 in the Appendix examines the dynamics of this effect by repeating Figure 4.1 Panel (b)
using non-AI vacancy shares, and again finds that the divergence between more and less exposed establishments
coincides with the take-off in machine learning demand from 2016.
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Table 5.1: Second stage: Impact of AI adoption on establishment non-AI vacancies

Growth in Non-AI Vacancies Growth in Total Vacancies

(1) (2) (3) (4) (5) (6)
Growth in AI Vacancies -3.574∗∗∗ -5.942∗∗∗ -3.605∗∗∗ -3.534∗∗∗ -5.909∗∗∗ -3.566∗∗∗

(1.168) (1.624) (1.139) (1.166) (1.624) (1.137)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 26.06 26.31 27.17 26.06 26.31 27.17
Observations 22,251 22,251 22,251 22,251 22,251 22,251

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is the growth in establishment AI vacancies between 2010-12 and 2017-19, approximated by the change

in the inverse hyperbolic sine. Likewise the dependent variables are the change in the inverse hyperbolic sine of the respective

establishment-level outcomes. Each coefficient therefore represents the percentage point impact upon the outcome variable of a

one percent increase in establishment AI hiring. The latter is instrumented by establishment AI exposure. This is calculated as

the standardized average of occupation AI exposure (from Webb 2020), over the occupations for which the establishment posts

vacancies in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022).

5.1.1 Mechanisms

To dig deeper into the heterogeneity of effects across the labour market, we explore the impacts

on different occupations and tasks within occupations, with the following findings.

AI reduces growth in demand for higher-skilled occupations. We first study the effects

of AI on postings growth at the occupation level, following India’s NCO2004 classification of one-

digit and two-digit occupations. Table 5.2 shows that the decline in demand hits higher-skilled

occupations: the categories of ‘Professionals’ and ‘Managers’ suffer large reductions in their

respective growth rates. A 1% increase in the establishment growth rate of AI vacancies results

in a 6.2 percentage point decrease in the growth rate of non-AI vacancies for ‘Professionals’ and

a 12.19 percentage point decrease in the growth rate of non-AI vacancies for ‘Managers’. In

contrast, we see a small increase in the demand for lower-skilled workers, such as ‘Personal, Sales

and Security’, ‘Clerks’ and ‘Associate Professionals’. In the baseline (2010-2012), ‘Professionals’

and ‘Manager’ occupations make up 18% and 48% of all postings, respectively. The reduced

growth rate for vacancies in these occupations therefore plays a critical role in explaining our

aggregate result of lower non-AI vacancies growth. Our finding that AI hiring hits growth in

demand for high-skilled occupations aligns with the findings of Webb (2020), who notes that

the occupations most exposed to AI are disproportionately high-skilled jobs, i.e. those involving

pattern-detection, judgement and optimization, such as clinical laboratory technicians, chemical

engineers, optometrists, and power plant operators.
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Disaggregating this result further within these two groups using two-digit occupation codes,

Appendix Table B.5 shows that increased AI hiring reduces the growth rate of non-AI vacancies

for ‘Engineering Professionals’, ‘General Managers’, and particularly strongly for ‘Corporate

Managers’. In the baseline, 24% of all postings are for ‘Engineering Professionals’, 6% for

‘General Managers’, and 12% for ‘Corporate Managers’. Reduced vacancies growth for these

three occupations consequently plays a large role in our aggregate results.

Table 5.2: Second stage: Impact of AI adoption on establishment non-AI vacancies, by occupation
group

Growth in Non-AI Vacancies

Personal, Clerks Associate Professionals Managers
Sales & Security Professionals

Growth in AI Vacancies 2.094∗∗∗ 1.092∗∗∗ 5.121∗∗∗ -6.222∗∗∗ -12.19∗∗∗

(0.487) (0.354) (1.252) (1.581) (2.632)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓ ✓
First Stage F-Stat 27.17 27.17 27.17 27.17 27.17
Observations 22,251 22,251 22,251 22,251 22,251

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is the growth in establishment AI vacancies between 2010-12 and 2017-19, approximated by the change

in the inverse hyperbolic sine. Likewise the dependent variables are the change in the inverse hyperbolic sine of the respective

establishment-level outcomes. Occupation groups are 1-digit occupation groups from the NCO04. Each coefficient therefore

represents the percentage point impact upon the outcome variable of a one percent increase in establishment AI hiring. The latter is

instrumented by establishment AI exposure. This is calculated as the standardized average of occupation AI exposure (from Webb

2020), over the occupations for which the establishment posts vacancies in 2010-12, weighted by the number of vacancies posted per

occupation, as in Acemoglu et al. (2022).

AI reduces growth in demand for non-routine task intensive occupations. We next

aim to understand more about the relationship between impacts on occupations and their task

content, following the seminal literature (e.g. Autor et al. (2003) and Acemoglu & Autor (2011))

in examining routine and non-routine task intensity of occupations. We map the measures of

Acemoglu & Autor (2011) onto India’s NCO2004 classification of occupations and standardize

them. We then analyse the impact of AI hiring on the change in IHS-transformed routine and

non-routine scores at the establishment-level. As for the main results presented above, we are

instrumenting establishment AI hiring by AI exposure in the baseline. Table 5.3 documents the

significant negative effect of increased AI hiring on establishment-level growth in non-routine

task intensity. A 1% higher growth rate in AI hiring at the establishment level leads to a

reduction in the growth rate of non-routine task intensity of 6-7 standard deviations. For routine
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tasks, we do not find consistently significant effects of AI. Appendix Table B.9 finds similar

results for abstract and routine tasks following Autor & Dorn (2013), with a negative impact on

abstract tasks and no discernible impact on routine tasks.

Table 5.3: Second stage: Impact of AI adoption on establishment routine and non-routine tasks

Growth in Non-Routine Tasks Growth in Routine Tasks

(1) (2) (3) (4) (5) (6)
Growth in AI Vacancies -5.871*** -7.200*** -5.701*** 0.298 0.599** 0.349

(1.179) (1.432) (1.126) (0.216) (0.283) (0.219)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 26.06 26.31 27.17 26.06 26.31 27.17
Observations 22,251 22,251 22,251 22,251 22,251 22,251

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is the growth in establishment AI vacancies between 2010-12 and 2017-19, approximated by the change

in the inverse hyperbolic sine. Likewise the dependent variables are the change in the inverse hyperbolic sine of the respective

establishment-level outcomes. We average standardised routine and non-routine O*NET task contents by occupation, and form

establishments’ routine and non-routine task demand by weighting occupations by their standardised routine and non-routine

scores. Each coefficient therefore represents the percentage point impact upon the outcome variable of a one percent increase in

establishment AI hiring. The latter is instrumented by establishment AI exposure. This is calculated as the standardized average of

occupation AI exposure (from Webb 2020), over the occupations for which the establishment posts vacancies in 2010-12, weighted

by the number of vacancies posted per occupation, as in Acemoglu et al. (2022).

AI lowers demand for non-routine and abstract tasks within occupation groups.

The above result of declining demand for non-routine tasks could reflect changing task demand

within occupations or a shift in demand between occupations. We hence next ask how increased

AI hiring affects establishment-level non-routine task intensity within occupation groupings,

as shown in Table 5.4. We find that increased AI demand also reduces demand growth for

non-routine tasks within all broad occupation categories. We find the strongest reduction in

non-routine task growth for the category of ‘Managers’, which makes up 48% of job posts in the

baseline. Appendix Table B.10 repeats Table 5.4 for abstract tasks following Autor & Dorn

(2013), finding similar results of a decline in growth in demand for abstract tasks within all

occupational groupings except Clerks and a coefficient with the largest order of magnitude for

Managers.

AI reduces demand for analytical and complex communication tasks. The above

measures of task intensity of occupations relied on time-invariant measures of the task content

of occupations from O*NET. AI could also impact the task content within occupations over
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Table 5.4: Second stage: Impact of AI adoption on establishment non-routine tasks, by
occupation group

Growth in Non-Routine Tasks

Personal, Clerks Associate Professionals Managers
Sales and Security Professionals

Growth in -0.920*** -0.785*** -2.801*** -0.832*** -4.870***
AI Vacancies (0.263) (0.241) (0.487) (0.277) (1.067)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓ ✓
First Stage F-Stat 27.17 27.17 27.17 27.17 27.17
Observations 22,251 22,251 22,251 22,251 22,251

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is the growth in establishment AI vacancies between 2010-12 and 2017-19, approximated by the change

in the inverse hyperbolic sine. Likewise the dependent variables are the change in the inverse hyperbolic sine of the respective

establishment-level outcomes. We average standardised routine and non-routine O*NET task contents by occupation, and form

establishments’ routine and non-routine task demand by weighting occupations by their standardised routine and non-routine

scores. Each coefficient therefore represents the percentage point impact upon the outcome variable of a one percent increase in

establishment AI hiring. The latter is instrumented by establishment AI exposure. This is calculated as the standardized average of

occupation AI exposure (from Webb 2020), over the occupations for which the establishment posts vacancies in 2010-12, weighted

by the number of vacancies posted per occupation, as in Acemoglu et al. (2022).

time. We hence next aim to take a further, more granular, approach by studying the verbs

mentioned within the text of job adverts. We use the verb classification of Roget’s Thesaurus,

as discussed above. We count verbs in all job postings, dividing by the total number of verbs

counted in each job post. These are then aggregated at the establishment level for the baseline

and endline, such that we are able to run similar regressions to those in Table 5.1, with the

dependent variable now changing verb usage, which we interpret as changing task demand.

Figure 5.1a shows that AI has a negative effect on the share of verbs in one category: those

relating to the ‘Intellectual Faculties’. A 1% higher AI hiring growth rate leads to a 13.8

percentage point lower growth in the share of verbs in the category of ‘Intellectual Faculties’ in

job postings. Figure 5.1b shows that within this category AI hiring has statistically significantly

negative effects on the share of verbs in three sections: ‘Precursory Conditions’, ‘Means of

Communicating Ideas’ and to a lesser extent ‘Extension of Thought’. The first involves analytical

tasks like ‘investigate’, ‘research’ and ‘explore’. The second involves complex communication

tasks like ‘narrate’ and ‘describe’. The final involves tasks like ‘predict’ and ‘forecast’. These

results are in line with the notion that machine learning reduces the cost or improves the quality

of the task of ‘prediction’ (Agrawal et al. 2018). We also find that these results also hold when
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keeping only the top 1% highest paid jobs per establishment, suggesting that AI also reduces

demand for these same tasks within the highest paid occupations. These results are found in

Appendix Figures B.12 and B.13.28

28When keeping only the top 1%, results are only significant at the 10% level, perhaps due to the smaller
sample size.
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Figure 5.1: Impact of 1% higher establishment AI hiring growth on verb usage by class and
section

(a) By verb class

(b) By verb section within Intellectual Faculties, and example verbs

Notes: These coefficient plots show the impact of increased establishment AI demand on verb share growth
between 2010-2012 and 2017-2019, where verb shares are formed from counting verbs in job descriptions of job
ads. Point estimates accompanied by 95% and 90% confidence intervals. Each coefficient is from a regression of
type (2) in Table 5.1. Here, the outcome variable is growth in the IHS-transformed share of verbs from the
respective section or class. In other words, each coefficient represents the percentage point impact of a 1%
higher growth in establishment AI demand on verb share growth. AI demand is instrumented by AI exposure.
This is calculated as the standardized average of occupation AI exposure (from Webb 2020), over the
occupations for which the establishment posts vacancies in 2010-12, weighted by the number of vacancies posted
per occupation, as in Acemoglu et al. (2022). Standard errors are clustered at the firm level, and we include
region, firm decile and industry fixed effects.
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5.2 Impacts of AI on wage offers

Turning to wage offers, we take advantage of the fact that firms complete a standard template

to advertise on the platform, providing us with wage offer data for all vacancies. Table 5.5

documents the impact of higher growth in AI vacancies on the growth of median wages for

non-AI postings and all job postings. A 1% higher growth rate in AI vacancies between 2010-12

and 2017-19 reduces the growth rate of non-AI wage offers by 2.6 percentage points (p<0.01)

across the same time period, again instrumenting with AI exposure and controlling for region,

industry and firm size. As with vacancy growth, the negative effects of AI demand are hardly

changed when considering all posts, inclusive of AI postings.

Table 5.5: Second stage: Impact of AI adoption on establishment non-AI wages

Growth in Non-AI Median Wage Growth in Overall Median Wage

(1) (2) (3) (4) (5) (6)
Growth in AI Vacancies -2.703∗∗∗ -3.101∗∗∗ -2.599∗∗∗ -2.632∗∗∗ -3.017∗∗∗ -2.527∗∗∗

(0.799) (0.895) (0.758) (0.770) (0.862) (0.730)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 25.32 25.64 26.39 26.61 26.84 27.71
Observations 22,064 22,064 22,064 22,071 22,071 22,071

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is the growth in establishment AI vacancies between 2010-12 and 2017-19, approximated by the change

in the inverse hyperbolic sine. Likewise the dependent variables are the change in the inverse hyperbolic sine of the respective

establishment-level outcomes. Each coefficient therefore represents the percentage point impact upon the outcome variable of a

one percent increase in establishment AI hiring. The latter is instrumented by establishment AI exposure. This is calculated as

the standardized average of occupation AI exposure (from Webb 2020), over the occupations for which the establishment posts

vacancies in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022).

The reduction in the growth rate of non-AI wage offers in response to increased AI demand

occurs across the entire wage offer distribution after the 20th percentile. Figure 5.2 illustrates

the percentage point impact of a 1% higher growth rate in AI demand on the growth rate of

a given percentile of the wage offer distribution at establishment level between 2010-12 and

2017-19, instrumented with AI exposure and controlling for region, industry and firm size fixed

effects. Across the wage offer distribution from the 20th percentile onwards, we observe a

statistically significant reduction (at the 5 % level) in establishment level wage offers for non-AI

jobs over time, ranging from -1.3 to 2 percentage points (p<0.05). Growth in wage offers at the
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10th percentile is weakly statistically significant, at the 10% level, with a t-statistic of -1.92.2930

Mid-wage offers are most affected by the changes in wage growth over time, although these

results are not statistically significantly different from the changes to low and high-wage offers.

Figure 5.2: Impact of AI demand on the wage offer distribution in non-AI posts

Notes: This coefficient plot shows the impact of increased establishment AI demand on wage growth over time across the distribution

of establishment wage offers. Each coefficient is from a regression of type (2) in Appendix Table B.7. In other words, each coefficient

represents the percentage point impact of a 1% higher growth in establishment AI demand on wage growth over time for a given

percentile of the wage offer distribution. We report the 1st and 99th percentile of the wage offer distribution and deciles in between

the two extremes, alongside 95% confidence intervals. As in Appendix Table B.7, AI demand is instrumented by AI exposure.

This is calculated as the standardized average of occupation AI exposure (from Webb 2020), over the occupations for which the

establishment posts vacancies in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022).

Standard errors are clustered at the firm level, and we include region, firm decile and industry fixed effects. Since AI posts make up

only a small share of all roles in most establishments, the pattern is very similar across the distributions for all posts and for non-AI

posts only.

These findings of lower wages could be driven by either between occupation effects, with

AI changing the occupational composition and position of the median wage offer, or within

occupation effects, with AI affecting wage offers for the same occupations. We showed in Table

5.2 that AI lowers growth in demand for the highest paid occupations, and raises demand for the

lowest paid occupations. This likely explains part of the downward shifting wage distribution.

Splitting the sample by occupation group results in small sample sizes and so it is challenging

to evaluate wage impacts within occupation groups.31 However, we additionally control for

changing occupation group shares and find evidence for within occupation effects driving these

results in Figure 5.3. Accounting for the changing occupational composition, only the top 1%

29The negative effect on the wage growth at the 1st percentile of the wage offer distribution is the only
non-statistically significant result at conventional levels of significance.

30While we observe a fall in wage offers for each decile over time, we remain agnostic about the change in the
composition of jobs at each decile.

31Although we do so in Appendix Figure B.6, finding weak negative effects
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highest paid jobs see a decline in wage offer growth. This effect is statistically significant at the

10% level.

Figure 5.3: Impact of AI demand on the non-AI wage offer distribution, holding occupational
composition fixed

Notes: This coefficient plot shows the impact of increased establishment AI demand on wage growth over time across the

distribution of establishment wage offers, controlling for the change in shares of 1-digit NCO04 occupations, leaving out occupation

2 (‘Professionals’), as it is the largest occupation category in the baseline period. Each coefficient is from a regression of type (2) in

Appendix Table B.7. In other words, each coefficient represents the percentage point impact of a 1% higher growth in establishment

AI demand on wage growth over time for a given percentile of the wage offer distribution. We report the 1st and 99th percentile of

the wage offer distribution and deciles in between the two extremes, alongside 95% confidence intervals. As in Appendix Table B.7,

AI demand is instrumented by AI exposure. This is calculated as the standardized average of occupation AI exposure (from Webb

2020), over the occupations for which the establishment posts vacancies in 2010-12, weighted by the number of vacancies posted per

occupation, as in Acemoglu et al. (2022). Standard errors are clustered at the firm level, and we include region, firm decile and

industry fixed effects.

We also explore whether these wage offer results hold when additionally controlling for

changes in the job requirements specified in the vacancy posts. We find that the reduction

in the growth of non-AI wage offers persists, even when controlling for changes in education

and experience requirements over time. Appendix Table B.7 shows the effect of the growth

of AI vacancies on the growth of the median wage offers of non-AI posts and all posts, after

controlling for the growth in the average experience and education levels. Even when controlling

for changes in job requirements over time, a 1% higher growth rate in AI vacancies reduces

the growth rate in the median wage offers of non-AI posts by 1.93 percentage points (Column

2) and of all posts by 1.89 percentage points (Column 5) between 2010-12 and 2017-19, both

precisely estimated at the 1% level of significance. These coefficients are, however, slightly lower

than those in Table 5.5, suggesting that both potential explanations play a role. Greater AI

demand both changes the type of workers hired, and reduces the wage offer conditional upon

worker profiles.
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5.3 Taking stock

Our main finding is that rising demand for AI skills within establishments lowers growth in

non-AI vacancies and total vacancies. We showed that this negative impact was driven by lower

growth in demand for higher-skilled jobs (professional and managerial occupations), while AI

has a positive impact on growth in demand for personal, sales and security occupations and

clerks. In terms of the content of work being affected, the negative effects are also underpinned

by falling demand for non-routine task intensive occupations, both across the board and within

our five broad occupational groupings. Within the professional and managerial categories, AI

concurrently raises demand for routine-task intensive occupations. In terms of the specific verbs

being mentioned in the job postings, AI lowers mentions of verbs relating to analytical tasks and

complex communication. This also holds both across the board and within the top 1 percent

highest paying jobs in each establishment.

For wages, we showed that rising demand for AI skills within establishments also lowered

wage offers in non-AI posts and wages at each percentile of the establishment wage distribution.

Most of this effect appears to be driven by the impacts of AI on changing the occupational

composition within establishments, but we also find some evidence of lower wage offers for the

highest paying roles. The reduction in the growth of non-AI wage offers also persists, even when

controlling for changes in education and experience requirements over time, suggesting that

AI both changes the type of workers hired, and reduces wage offers conditional upon worker

profiles.

6 Extensions and Robustness

6.1 Short-term impacts

Given our findings on the medium-term impacts of AI, we also check whether AI adoption has

any immediate impacts on establishments, using an event study design. We showed in Section 3

that AI adopters are larger and pay higher wages than non-AI adopters and so AI adoption is

unlikely to be random. Following Koch et al. (2021), we therefore match AI adopters to similar

non-adopters using propensity scores. We construct these by running a probit regression of AI

adoption on a range of firm characteristics, and hence deriving predicted adoption probabilities.32

These characteristics control for the fact that AI adopters are generally larger and more mature

32Specifically, we include lags of firm size decile, hiring, salary, experience levels, firm age, the standard
deviation of salaries and experience, and a number of interaction terms.
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Figure 6.1: Event study for non-AI postings following AI adoption

Notes: We use two way fixed effects on a balanced panel. The outcome variable is IHS-transformed establishment non-AI hiring.

Adopters are matched to never adopters by propensity score weighting, with propensity scores from a probit regression of establishment

characteristics on AI adoption, documented in Appendix Table ??. We use three leads and lags, leaving out the first lead (t-1) as

the base period, and cluster standard errors on establishments.

companies with higher productivity.33 Conditional on our propensity scores, AI adoption is

orthogonal to observable establishment characteristics.34

We then run an annual propensity score weighted event study regression at the establishment

level with three lags and leads. We estimate at the level of establishments i:

Yit = αi + αt +
2∑

k=−3\−1

βk · 1(Kit = k) + β3+ · 1(Kit ≥ 3) + ϵit, (6.1)

where Yit is the number of job postings, using an inverse hyperbolic sine (IHS) transformation.

αi and αt respectively are establishment and time fixed effects. Kit is the time difference between

the current year and adoption of AI. ϵit is the error term. The parameters βk are the outcomes

of interest. We include three lags and leads, omitting the first lead to set the baseline level.

Further, we account for non-hiring following adoption by balancing the panel, i.e., by imputing

zero hiring where no vacancy posts are observed.

We find that, following an initial positive impact of AI adoption on non-AI hiring, non-

33Appendix Table ?? affirms that more productive establishments with a greater share of high-skilled workers
are more likely to adopt AI.

34Appendix B.3 provides further details on the propensity scores, including results from the probit regression.
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AI hiring is significantly lower (at the 5% level) in the second year after adoption. This

negative impact increases in magnitude in the third year following AI adoption. Using the IHS

transformation, coefficients can be interpreted as semi-elasticities: non-AI hiring is 0.7% lower

for adopters in the second year after adoption, and 1% lower three years after adoption. These

results are robust to the imputation estimator of Borusyak, Jaravel & Spiess (2021).

6.2 Wider effects

Does AI demand affect broader outcomes, beyond the establishment level? We investigate this

question in two ways. First, we aggregate the job postings to the district level and run the same

regression specification. With the same cross-sectional long difference specification the sample

size is now substantially smaller than that for establishments. We still find that AI exposure

predicts AI demand (Appendix Table B.11 column (1)), but we do not find any statistically

significant results for non-AI or total vacancies growth (columns (2) and (3)). We do find weakly

significant (at the 10% level) negative results for the effect of AI demand on non-AI and overall

wage offer growth.

Second, we examine changes in employment and wages between two nationally representative

labour force surveys, namely the 2011-12 National Sample Survey (NSS) and 2017-18 Periodic

Labour Force Survey (PLFS). We combine our existing district-level first stage with a second

stage using these labour force survey-derived outcome variables. Again we find no statistically

significant effects for employment or wages. Results are shown in Appendix Table B.12.

We also investigate wider effects in our event study specification. Similarly to the medium-

term results, however, when we aggregate to the district level we do not find significant results,

as shown in Appendix Figure B.14 in Appendix B.3.35 One interpretation of these results is

that while AI has had negative within-establishment effects, these have been offset by positive

effects in other establishments in the same district.

6.3 Shift-share validity

The instrument used in our long-difference specification is constructed in a Bartik or shift-share

format. The ‘shares’ are establishment posting shares by occupation in 2010-12, and the ‘shocks’

are occupation varying measures of exposure to future AI patents in the USA. Recent literature

(e.g. Borusyak, Hull & Jaravel (2021), Goldsmith-Pinkham et al. (2020)) has pointed to the

35For wage offers, we cannot balance the panel using the same imputation method, as vacancies that were
never posted have no wage offer.
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conditions under which shift-share instruments are valid. In our setup, we view the case for

causal identification as stemming from the plausible exogeneity of the baseline posting shares.

Following Goldsmith-Pinkham et al. (2020) we provide three robustness checks to test the

validity of this instrument, which are discussed in more detail in Online Appendix C.1. First,

we investigate the correlates of the shares, finding that the instrument does not appear to be

correlated with baseline controls. Second, we test for pre-trends by investigating whether the

baseline occupation shares predict year-on-year growth in employment or wages, finding low

predictive power. Finally, we compare a range of estimators and run over-identification tests,

finding similar results across estimators that further allay concerns.

6.4 Alternative exposure measures

For our main specifications, we use the AI exposure measure proposed by Webb (2020), as

it measures which tasks overlap with capabilities outlined in AI patents. Webb (2020) also

validates the measure against previous IT and robotic trends. However, alternative AI exposure

measures have also been proposed in the literature to date. Therefore, we examine whether our

results remain robust to alternative definitions of our instrument.

We first consider the AI exposure measure proposed by Felten et al. (2018). Their AI

Occupational Impact measure draws on data from the AI Progress Measurement project from

the Electronic Frontier Foundation. The data identify nine application areas in which AI has

made progress since 2010. Felten et al. (2018) crowdsource assessments on the applicability of

these applications to 52 O*NET ability scales using Amazon MTurk. The AI Occupational

Impact assigns an AI exposure score to each O*NET occupation as the weighed sum of the 52

O*NET ability assessments, where the weights are equal to the O*NET-reported prevalence and

importance of each ability within each occupation. We map the Felten et al. (2018) measure to

Indian NCO using a publicly available crosswalk (see Appendix A).

The results on wages remain robust to the use of the Felten et al. (2018) AI exposure

instrument. We first observe that the AI exposure predicts AI demand in the first stage

(Appendix Table C.4). Turning to the second stage, we observe that the negative effects on the

growth of wage offers in response to increased AI demand remains robust to the use of Felten

et al. (2018) as an instrument. A 1% higher growth in AI demand results in a 1.51% decrease

(p<0.05) in the growth rate in wage offers between 2010-12 and 2017-19 (Appendix Table C.8).

Moreover, we similarly observe a negative effect on the growth rate across the entire wage offer

distribution, except for the very lowest percentiles (Appendix Figure C.1). Although we do not
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observe any significant effects on the growth of non-AI vacancies for the full sample (Appendix

Table C.5), we do find similar negative effects for professional and managerial occupations

(although now positive effects for associate professionals) and for non-routine task intensity at

the establishment level.

We also consider the Suitability for Machine Learning (SML) methodology from Brynjolfsson

et al. (2018), which uses surveys to score O*NET direct work activities against a rubric of

suitability for machine learning (e.g. inputs and outputs are machine-readable, feedback is

immediate, task is principally concerned with matching or prediction, etc.). We use an India-

specific version of the SML index created by Mani et al. (2020), who interviewed more than

3000 Indian employees using the SML rubric and mapped a SML score onto every occupation

in the 2004 NCO at the four-digit level. However, the SML exposure measure fails to predict

firm demand for AI skills using our job vacancy data. One explanation for these differences

could be that the Webb (2020) measure is based on current patented technological capabilities,

whereas the SML measure is more forward-looking in its predictions. This result that the SML

index does not predict AI demand was also found in Acemoglu et al. (2022) suggesting that the

limited predictive power is not limited to India only.

6.5 Alternative controls and specifications

We also explore several alternative specifications, with results provided in Appendix C. We first

address concerns that establishments experiencing a rise in demand for machine learning skills

are also software-engineering intensive firms or firms more affected by computerization by adding

additional controls for the baseline establishment posting shares for software engineers and sales

and administrative professionals. The latter follows Acemoglu et al. (2022), and controls for two

broad occupations which see a decline due to computerization (Autor & Dorn (2013)). Results

are shown in Figures C.10 and C.12, demonstrating that the key conclusions still hold when

adding these controls.

One further concern could be that the number of AI postings by an establishment is too

noisy a proxy for the intensive margin of AI demand. We hence also explore the impact of the

extensive margin of AI demand where demand is a binary variable. Tables C.13 to C.16 use

an AI adoption dummy as the instrument, which equals 1 for establishments that did not post

AI vacancies in the baseline period, but posted AI vacancies in the endline period. Table C.13

shows that establishment-level AI exposure predicts this AI adoption dummy. The results in

Table C.14 maintain a significant negative impact of AI adoption on growth in non-AI and
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overall vacancies while tables C.15 and C.16 maintain similar results for non-AI and overall

median wage growth. The interpretation of the estimated coefficients is different for the adoption

dummy: adopters of AI have (approximately) 7% lower growth in non-AI vacancies and total

vacancies, as seen in columns (2) and (5) of Table C.14. Columns (2) and (5) of tables C.15 and

C.16 indicate an (approximately) 5% and 4% lower growth in non-AI and overall median wages,

respectively, for adopters of AI between the baseline and endline. Tables ?? and ?? maintain

similar results for a specification with the dependent variable in logs.

Another concern could be that our long difference specification is too restrictive in focusing

only on the subset of firms that posted on the platform in both the baseline and endline. Tables

C.17 to C.19 show the results from using a shorter difference, between 2013-15 and 2017-19.

These draw on a larger sample, as fewer firms drop out over the shorter period, at the cost of

not spanning the entire takeoff in AI hiring (Figure 3.1). Nonetheless, the results are similar

to those in the main specifications. Increased machine learning hiring leads to significant and

substantial reductions in non-machine learning hiring (Table C.17) and wages (Table C.18),

including when controlling for job profiles (Table C.19). This shorter long-difference also allows

us to differentiate between newer firms (‘start-ups’) and older firms in the sample from the start

(‘incumbents’).36 We classify an establishment as an incumbent if it posts vacancies in the years

2010-2012, and as a start-up if it only starts posting vacancies after that period. In Tables C.20

and C.21, we show that the negative employment and wage results are driven by incumbent

establishments.

The wage results are robust to using mean rather than median wage offers (Table C.22).

Our results are also robust to weighting by baseline establishment size, proxied by number of

job postings advertised between 2010 and 2012, with the top 5% winsorised (Tables C.23, C.24).

7 Conclusion

Rapid innovations in machine learning could reshape many jobs, raising questions about the

distributional impacts of AI. While the extent of AI diffusion has been measured in high-income

countries and particularly the US, there is little evidence on its deployment in low- and middle-

income countries. AI could have important implications for a services-led development model,

given the potential for recent advances in machine learning to automate many of the constituent

tasks of many white-collar services occupations.

36In the long-difference before, every establishment present had to be posting in the baseline period in order
to be included, such that all establishments are, in that sense, incumbents.
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In this paper, we use a new dataset of online vacancy posts from India’s largest jobs website

to shed light on the demand for AI skills in the predominantly urban, white-collar services

sector. There was a rapid take-off in demand for AI-related skills after 2016, particularly in the

IT, finance and professional services industries, closely mirroring patterns found for advanced

economies (Grennan & Michaely 2020, Acemoglu et al. 2022). We evaluate the labour market

impacts of establishment-level demand for AI skills, as a proxy for AI deployment. We use a

long-difference shift-share specification that exploits variation in establishments’ exposure to

patented advances in AI capabilities (Webb 2020).

We find that growth in AI demand has a significant negative impact on the growth in non-AI

postings and average wage offers by establishments. These negative effects on vacancy growth are

most pronounced for higher-skilled professional and managerial occupations, notably engineering

professionals and general and corporate managers. Using the classification of Acemoglu &

Autor (2011), we find that AI lowers demand for occupations that are typically non-routine task

intensive, both overall and within the affected managerial and professional occupation groupings.

This stands in sharp contrast to findings for computerisation and robotics, which have been

shown to lower demand for routine tasks (Autor et al. 2003, Goos & Manning 2007, Goos et al.

2014). Taking an even more granular approach and classifying verbs in the text of the job

adverts using Roget’s Thesaurus, we find that AI adoption reduces demand for verbs related

to ‘intellectual faculties’, particularly those relating to investigation, prediction and narration.

These results are in line with the notion that machine learning reduces the cost or improves the

quality of the task of ‘prediction’ (Agrawal et al. 2018). When we unpack the negative effects

on wage offers and control for the shifting occupational distribution, we find negative wage offer

effects only for the top 1% highest paid jobs, suggesting that our wage results are primarily

explained by a change in the composition of hiring.

We also use an event study design combined with propensity score matching to check the

immediate impact on vacancies posted after firms first advertise AI-related roles. We find that

the demand for AI skills reduces demand for non-AI roles in the subsequent three years. We

also explore wider effects at the district level using both methods. In contrast to our findings at

the establishment level, we find no evidence of negative impacts of AI hiring on total labour

demand and only weak medium-term negative effects on wage offers at the district level.

Taken together, we find sizable impacts of AI on high-skilled, non-routine, analytical work

within establishments in India’s predominantly urban, white collar service sector. These effects

of AI in its early years of adoption contrast with those for the computer and robot revolutions,

where routine work lost out. AI jobs pay a substantial wage premium, but these opportunities
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are highly concentrated in certain industries, cities and large firms, providing benefits for a small

group with AI skills at the expense of demand for other types of high-skilled worker. However,

these displacement effects are driven by older ‘incumbent’ firms that are not AI ‘producers’.

When we look for wider effects at the district level, we find little evidence of displacement. This

could suggest that negative within-establishment effects are offset by growth in new startups,

including those focused on AI production, or that the aggregate impacts of AI are not yet

economically meaningful. Tracing the aggregate impacts of future advances in, and deployment

of, AI on innovation and employment will an important task for future research.
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ONLINE APPENDIX

This supplementary online appendix contains three sections, in turn providing further details on

the construction of the data, additional descriptives and results, and further robustness checks.

Appendix A lays out how we construct our dataset, benchmarks it against administrative data

and discusses representativeness. Appendix B provides additional descriptives on demand for AI

skills in Indian job postings, and provides additional results for the short-term and medium-term

impacts of AI, including at wider levels of aggregation. Finally, Appendix C provides detailed

robustness checks, including tests of our shift-share instrument and results using alternative

measures of exposure to AI, alternative specifications, and alternative data sources.
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Appendix A Data Details

This paper uses four main datasets: vacancy data from India’s largest jobs site; balance sheet

data from Prowess, which contains longitudinal balance sheet data on all publicly-listed and

many large private Indian firms; and nationally representative labour surveys conducted in

2011-2012 (the National Sample Survey) and in 2017-2018 (the Periodic Labour Force Survey).

Table A.1 summarises the number of observations across these datasets.

In this Appendix, we provide more details on the composition of the data and the construction

of the variables used. We first describe how we classify the occupations, industries and locations

in the vacancy data. We then assess the representativeness of the vacancy data by benchmarking

it against Prowess and the nationally-representative labour surveys.

Table A.1: Number of observations by data source

Online vacancy postings 2010-2019 #Firms #Posts

Agriculture 13,811 463,675
Manufacturing 57,980 2,543,995
Services∗ 167,969 15,481,330
— Financial 17,805 1,815,798
— Information 72,057 5,834,878
— Professional 38,533 834,932
— Other 106,798 6,995,722

Prowess (balance sheets) #Firms #Observations

Agriculture 123 590
Manufacturing 2,276 11,257
Services 3,675 16,722
— Financial 1,020 4,830
— Information 516 2,557
— Professional 199 811
— Other 1,940 8,524

Surveys (demographics) #Districts #Households

NSS 2012 626 101,725
PLFS 2018 646 102,063

Notes: Some services firms post in multiple sub-sectors, hence the total number of
services firms is less than the sum of all firms posting in the sub-sectors.

A.1 Construction of the vacancy dataset

The largest online job postings platform in India scraped and shared 80% of all job postings

(randomly sampled) from 2010 to 2019. All posts include text data on the job title, industry, role
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category, location, skills required, salary and experience ranges and educational requirements.

We manually map 99% of role titles to the 2004 Indian National Classification of Occupations

(NCO) at the four-digit level. We also manually map all industries to the 2008 Indian National

Industrial Classification (NIC) at the two-digit level. We clean 95% of city names and add

geo-locations, separating out oversees job postings. Using the geolocations, we match cities to

districts, using the 2011 census.

We also use publicly-available crosswalks to translate the AI exposure measures to the Indian

context. We map the 2000 Standard Occupation Classification used by Webb (2020) to the

2004 Indian National Classification of Occupations (NCO) via the 1988 International Standard

Classification of Occupations (ISCO), at the four-digit level. For the Felten et al. measure, we

map the 2008 ISCO to the 1988 ISCO, before again mapping onto the 2004 NCO.

A.2 Representativeness of the vacancy data

In this section we evaluate the representativeness of our vacancy data in relation to the broader

Indian labour market by benchmarking against widely-used administrative datasets and labour

surveys. Using the January 2022 Quarterly Employment Survey by the Indian Labour Ministry,

India’s services sector is estimated to formally employ 18.9 million workers.1 The QES gives

formal employment figures by sector excluding agriculture. Our paper excludes manufacturing

so we focus on services throughout. The breakdown by sub-industry, compared to our dataset

of online services job adverts, is shown in Figure A.1. Compared to the QES our vacancies

data is over-representative of IT BPOs and Financial Services. On the other hand, it is

under-representative of Hospitality, Education, Health, Transportation, and Trade.

The industry distribution of services firms in the vacancy data and the Prowess firm dataset

are shown in Figure A.2 Panel (a). The distribution of vacancies is shown in Panel (b), alongside

the distribution of equivalent white-collar service sub-industries in the pooled National Sample

Survey (NSS) and Periodic Labour Force Survey (PLFS).2 The vacancy data has relatively

fewer finance, insurance and real estate firms than Prowess, but a greater share in that sector

relative to the representative labour surveys. The national surveys also report relatively more

workers in education and transportation, likely because they include public sector workers,

whereas the vacancies and Prowess balance sheet data include only private firms. Panel (c)

1https://static.pib.gov.in/WriteReadData/specificdocs/documents/2022/jan/doc20221104101.

pdf
2We define white-collar services workers in the NSS context as salaried workers in divisions 1-5 of the

2004 Indian National Classification of Occupations, i.e. excluding agricultural, fishery, craft, manufacturing,
elementary and unclassified workers.
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Figure A.1: Distribution of formal workers in the QES compared with vacancy posts

Notes: Excludes the sectors ‘Other Services’ and ‘Administrative’ which feature in the vacancies data but do not match to an

equivalent sector in the Quarterly Employment Survey. Agriculture, fishery, and manufacturing are excluded in both.

shows the distribution of occupations in the vacancy data in contrast to the national surveys.

As would be expected, the vacancy data is over-representative of high-skill white-collar jobs and

under-representative of lower-skilled jobs, such as shop assistants or security guards, which are

more typically filled through referrals and offline hiring.
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Figure A.2: Comparison of vacancy data with Prowess firm-level data and labour force surveys

(a) Firm distribution (b) Worker/vacancy distributions

(c) Occupation distribution (d) Number of firms by year

Notes: These figures compare the composition of our vacancy dataset (red) to that of available administrative datasets (blue). Panel (a) shows the distribution of firms across industries relative to

Prowess. Panel (b) compares the distribution of vacancies to that of workers in the NSS and PLFS. Panel (c) shows the distribution of white-collar services occupations relative to NSS and PLFS.

Panel (d) compares the number of firms in the vacancy data to that in Prowess.
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Appendix B Additional Descriptives and Results

B.1 Descriptives

Details on the restricted sample: Table B.1 shows key descriptives across postings in the

restricted sample. This sample includes only establishments which post vacancies in both the

baseline (2010-2012) and endline (2017-2019), and only posts in service sector, AI-demanding

industries. Figure B.1a shows how shares of all postings for broad occupation groups evolve

over time, and Figure B.1b shows how shares of postings for AI in broad occupation groups

evolve over time.

For the restricted sample, we pool 2010-2012 as the baseline and 2017-2019 as the endline.

Accordingly, the differences in Table B.2 are defined for the endline over the baseline, and not

year on year.

Calculating the AI wage premium: When including industry-region, industry-time and

region-time fixed effects, we find that AI posts on average offer 30% higher wages than non-AI

posts (see Model (1) of Figure B.3). However, this may be driven by the highest-paying firms

also disproportionately hiring AI roles. Therefore, we add firm fixed effects to control for

differences between firms in Model (2). Even in this case, AI posts pay 19% more relative to the

average non-AI post. Finally, posts that require AI skills may simply be different types of jobs.

Models (3) and (4) therefore include fixed effects for the occupation and role, using respectively,

the NCO 2004 classification codes and the more granular role label built into the online jobs

site. A substantial AI premium of 13-17% remains.3 Table B.3 shows the AI wage premium

controlling for job characteristics.

Geographic breakdown of postings: In Figures B.2 and B.3, we show the distribution

of total posts and the share of AI jobs across districts. The distribution of cities’ shares of AI

posts over time is shown in Figure B.4.

3The interpretation of the control variables is as follows. An extra year of experience is associated with
a more than 35% higher salary (at least within the predominantly early-career jobs posted on the site – see
Figure 3.2), while having a Master’s degree is associated with up to 10% higher salary. In this sample, having
only a high school education is associated with wage offers 3-6% below the baseline of having an undergraduate
degree, though this figure is likely a dramatic underestimate of the effect, given the major under-representation
of lower-skilled professions on the platform. The relationship between wage offers and having a doctoral degree
is expressed predominantly through the firm- and role-effects: conditional on firm and occupation/role, there is
no significant relationship to salary, but without such conditioning salaries are 7-13% higher. This is consistent
with the wage offer premium for workers with doctorates being driven by taking higher-skilled jobs at more
advanced firms.
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Table B.1: Key descriptives of vacancy data in restricted sample, all jobs and AI jobs only

All Jobs AI Jobs
# Job Posts 4,101,323 38,230
Ratio of # Job Posts in 2019 to # Job Posts in 2010 2 61
% Posts in Baseline (2010-2012) 36 3
% Permanent Positions 99.6 99.75
# Establishments 104,578 2,140
% Posts by 5 Most Active Establishments 1 19
% Posts by 100 Most Active Establishments 12 60
Mean # Posts Per Establishment 167 18
Median # Posts Per Establishment 29 3
90th Percentile Posts Per Establishment 312 20
10th Percentile Posts Per Establishment 5 1
Mean # Posts per Establishment and Year (2010, 2019) (29, 51) (2, 11)
# Posting Establishment Per Year (2010, 2019) (14,000, 17,000) (107, 1,222)
Mean # Reposts 3.8 .8
Median # Reposts 4 0
90th Percentile Reposts 6 2
10th Percentile Reposts 1 0
# Firms 5,605 1,123
% Posts by 5 Most Active Firms 10 51
% Posts by 100 Most Active Firms 43 81
# Cities 442 52
% Posts in Bengaluru 21 43
% Posts in Top 5 Cities 64 84
% Posts in Top 10 Cities 85 98
# Industries 63 39
% Posts in IT Services 32 49
% Posts in BPO and Call Centres 11 2
% Posts in Banking and Financial Services 10 31
% Posts in Research and Analytics 1 5
# 4-digit Occupations (NCO 2004) 96 59
% Posts for Computer Programmers 17 36
% Posts for Business Professionals 15 13
% Posts for Technical and Sales Representatives 13 1
% Posts for Accountants 5 1
% Posts for Computer Professionals 5 22
% Posts for Computer Systems Designers and Analysts 2 6
% Posts for Research and Development Managers 1 3
% Requiring Undergraduate Education 81 12
% Requiring Postgraduate Education 15 85
Mean Required Work Experience, Years 1.87 2.1
Median Required Work Experience, Years 2 2.5
90th Percentile Work Experience, Years 2.5 2.5
10th Percentile Work Experience, Years 1 1
Mean Annual Salary, Rupees 195,000 351,000
Median Annual Salary, Rupees 137,500 300,000
90th Percentile Annual Salary, Rupees 425,000 500,000
10th Percentile Annual Salary, Rupees 37,500 105,000

Notes: Descriptive statistics overall and within AI jobs only.
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Table B.2: Difference (2017-19 over 2010-12) descriptives of vacancy data in restricted sample,
all jobs and AI jobs only

Difference in All Jobs AI Jobs
Mean # Posts 22 .65
90th Percentile # Posts 50 0
Mean AI Share .17% -
Mean Annual Salary, Rupees 17,000 23,000
Median Annual Salary, Rupees 16,000 18,000
90th Percentile Annual Salary, Rupees 27,000 77,000
10th Percentile Annual Salary, Rupees 6,000 -16,000
Mean Required Work Experience, Years .15 .15
Median Required Work Experience, Years .18 .18
Median Postgraduate Share 0 0
90th Percentile Postgraduate Share 22% 71%

Notes: Descriptive statistics overall and within AI jobs only.

Further descriptives on AI demand and exposure: Figure B.5 displays the global AI

vibrancy index from Perrault et al. (2019), including India’s performance relative to other

countries. The top 20 roles demanding AI skills in our analysis are listed in Figure B.6. Figure

B.7 shows the concentration of AI posts in firms. Figure B.8 shows differences by industry in

the diffusion of AI. Figure B.9 displays exposure to AI by wage offer.
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Table B.3: Wages in AI vs. non-AI roles

log Annual Salary

(1) (2) (3) (4)
AI post 0.318∗∗∗ 0.198∗∗∗ 0.128∗∗∗ 0.174∗∗∗

(0.0484) (0.0358) (0.0220) (0.0422)

Experience Required (Years) 0.470∗∗∗ 0.411∗∗∗ 0.386∗∗∗ 0.351∗∗∗

(0.00693) (0.00797) (0.00787) (0.00818)

High School 0.00481 -0.0644∗∗∗ -0.0408∗∗ -0.0395∗∗

(0.0788) (0.0192) (0.0185) (0.0172)

Master’s 0.104∗∗∗ 0.0774∗∗∗ 0.0448∗∗∗ 0.0198∗∗

(0.0144) (0.00990) (0.00781) (0.00814)

Doctorate 0.131∗∗ 0.0741∗ 0.0132 0.00218
(0.0588) (0.0417) (0.0325) (0.0339)

Fixed Effects:
– Industry-Region ✓ ✓ ✓ ✓
– Industry-Year ✓ ✓ ✓ ✓
– Region-Year ✓ ✓ ✓ ✓
– Firm ✓ ✓ ✓
– Occupation Code ✓
– Role Label ✓
R2 0.343 0.535 0.556 0.577
Observations 14012499 13976759 13275348 13976757

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. All

regressions include industry-region, industry-time and region-time fixed effects, and models (2)-(4) also include firm fixed effects.

AI post is a dummy such that the coefficient is the percentage increase in annual salary associated with posts requiring AI skills,

after accounting for the control variables and fixed effects. Similarly, Experience is measured in years, so the coefficient reflects the

percentage salary increase associated with an additional year of experience. The education variables are dummies, with the baseline

category being a Bachelor’s degree; for instance, High School reflects the percentage salary decrease associated with posts that

only require a high school education. The Occupation Code fixed effect also accounts for variation across India’s 4-digit National

Classification of Occupations codes, while the more granular Role Label fixed effect accounts for variation across the self-selected

role classifications built into the jobs portal.
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Figure B.1: Share of job posts by broad occupation group over time.

(a) All Job Posts

(b) Only AI Job Posts

Notes: Share of 1 digit NCO04 occupations overall and within AI jobs only.
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Figure B.2: Total posts by district, 2010-2019

Notes: This map shows the distribution of our online vacancy posts across Indian districts for the entire period 2010-2019. Labels

are shown for the ten cities with the largest numbers of posts.

Figure B.3: Share of all AI posts by district, 2010-2019

Notes: The map shows the distribution of the share of all AI posts by particular districts, for the entire period 2010 to 2019. Labels

are shown for the top ten cities with the most AI posts. The majority of districts have few AI posts, since hiring is clustered in the

largest cities.

11



Figure B.4: Cities’ shares of AI posts over time

Notes: This graph shows the distribution of AI posts across cities over time. Each year reflects the share of all AI vacancies in

that year which were in each city. Shares have been remarkably constant. Bangalore’s share peaked at just over 40% in 2014, then

Mumbai’s share in particular has risen subsequently as AI demand increased in finance (see Figure 3.1).
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Figure B.5: Global AI Vibrancy, from Perrault et al. (2019)

Notes: This chart shows relative country scores on a wide range of AI progress metrics. India (fourth from right) scores highly

only on skill penetration (the average share of AI skills among all the top 50 skills in each occupation, across all occupations in the

country) and number of unique AI occupations (those that have any AI skills in their top 50 skills). These are both calculated using

LinkedIn data, which is far less representative in India than in developed countries due to low coverage. Skill penetration is thus

likely an overestimate, while the number of AI occupations is largely driven by India’s population size.
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Figure B.6: Top 20 roles demanding AI skills, 2010-2019

Notes: We rank the top roles demanding AI skills by their share of AI posts. All other roles hiring
AI skills are grouped in the ‘Other’ category.

Figure B.7: Firm concentration of AI posts, 2010-2019

Notes: We plot the trend in the Herfindahl Index for AI and non-AI vacancies over time. These
are calculated for each year as the sum of squared firm market shares of all AI or non-AI posts,
respectively.
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Figure B.8: Heterogeneity in AI diffusion across industries

Notes: We plot the change in the share of vacancies that are AI vacancies, for years before and after the first adoption of AI in an

industry-city pair, for each of the top five industries by AI adoption. AI posts by the initial AI adopter are excluded in order to

focus on diffusion of AI posting to other firms in the industry-city pair.

Figure B.9: AI exposure by occupation wage offers

Notes: This graph shows a smoothed local polynomial regression of the Webb AI exposure measure on occupational wage offers. We

first rank occupations by their average salary across all vacancy posts 2010-2019. We then plot the AI exposure associated with each,

smoothing across a bandwidth 10 of percentage points. In addition to our main measure, from Webb (2020), we also show analogous

results for the alternative measures (Felten et al. 2018, Mani et al. 2020) which we use in robustness checks in Appendix C.
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B.2 Medium-term impacts

This appendix includes further results for the medium-term impacts section. In Table B.4, we

show the first stage. Figure B.10 shows the relationship between AI exposure and the non-AI

share of establishment’s posts. Figure B.11 extends the wage distribution graph to all postings.

Table B.5 studies the impact of AI on 2-digit occupations. Table B.6 shows wage growth results

by 1-digit occupations. Table B.7 additionally controls for job profiles in the wage growth

regressions and Table B.8 shows the impact of AI on non-AI education and experience. Table

B.9 shows task growth results for abstract and routine tasks following Autor & Dorn (2013)

and confirms the findings of Table 5.3. Similarly, Table B.10 repeats Table 5.4 for abstract and

routine tasks following Autor & Dorn (2013). Figures B.12 and B.13 restrict the regressions of

AI demand growth on verb demand growth to the 1% highest paid jobs in order to study the

top end of the wage distribution, for which we find within occupation wage growth reductions

when controlling for the shifting occupational distribution.

Table B.4: First stage: Impact of AI exposure on establishment AI adoption

Growth in AI Vacancies

(1) (2)
Establishment AI Exposure 0.0170∗∗∗ 0.0193∗∗∗

(0.00331) (0.00370)
Fixed Effects:
– Region ✓ ✓
– Firm Decile ✓ ✓
– Industry ✓
R2 .0341 .049
Observations 22,251 22,251

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

dependent variable is the growth in establishment AI vacancies between 2010-12 and 2017-19, approximated by the change in the

inverse hyperbolic sine. The independent variable is establishment AI exposure, calculated as the standardized average of occupation

AI exposure (from Webb 2020), over the occupations for which the establishment posts vacancies in 2010-12, weighted by the number

of vacancies posted per occupation, as in Acemoglu et al. (2022). Each coefficient therefore represents the proportional impact on AI

hiring of a one-standard deviation rise in AI exposure.
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Table B.5: Second stage: Impact of AI on establishment non-AI postings, by detailed occupation
group

Growth in Non-AI Vacancies
Professionals Managers

Engineering Health Teaching Other Corporate General
Professionals Professionals Professionals Professionals Managers Managers

Growth in AI Vacancies -4.951∗∗∗ 0.548∗ 0.284∗∗∗ -2.687∗∗∗ -12.18∗∗∗ -2.403∗∗∗

(1.198) (0.332) (0.107) (0.926) (2.592) (0.827)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓ ✓ ✓
First Stage F-Stat 27.17 27.17 27.17 27.17 27.17 27.17
Observations 22,251 22,251 22,251 22,251 22,251 22,251

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is the growth in establishment AI vacancies between 2010-12 and 2017-19, approximated by the change

in the inverse hyperbolic sine. Likewise the dependent variables are the change in the inverse hyperbolic sine of the respective

establishment-level outcomes. Occupation groups are 2-digit occupations within Professionals and Managers from the NCO04.Each

coefficient therefore represents the percentage point impact upon the outcome variable of a one percent increase in establishment AI

hiring. The latter is instrumented by establishment AI exposure. This is calculated as the standardized average of occupation AI

exposure (from Webb 2020), over the occupations for which the establishment posts vacancies in 2010-12, weighted by the number

of vacancies posted per occupation, as in Acemoglu et al. (2022).

Table B.6: Second stage: Impact of AI adoption on establishment non-AI wages, by occupation
group

Growth in Non-AI Median Wage

Personal, Clerks Associate Professionals Managers
Sales & Security Professionals

Growth in AI Vacancies 0.297 0.474∗ -0.393 -0.460 -0.684∗

(0.858) (0.277) (0.348) (0.413) (0.415)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓ ✓
First Stage F-Stat 5.22 12.34 30.04 14.21 16.7
Observations 981 2,059 13,128 9,296 8,003

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is the growth in establishment AI vacancies between 2010-12 and 2017-19, approximated by the change

in the inverse hyperbolic sine. Likewise the dependent variables are the change in the inverse hyperbolic sine of the respective

establishment-level outcomes. Occupation groups are 1-digit occupation groups from the NCO04. Each coefficient therefore

represents the percentage point impact upon the outcome variable of a one percent increase in establishment AI hiring. The latter is

instrumented by establishment AI exposure. This is calculated as the standardized average of occupation AI exposure (from Webb

2020), over the occupations for which the establishment posts vacancies in 2010-12, weighted by the number of vacancies posted per

occupation, as in Acemoglu et al. (2022).
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Table B.7: Second stage: Impact of AI adoption on establishment non-AI wages, controlling for
job profiles

Growth in Non-AI Median Wage Growth in Overall Median Wage

(1) (2) (3) (4)
Growth in AI Vacancies -2.132∗∗∗ -1.933∗∗∗ -2.088∗∗∗ -1.891∗∗∗

(0.674) (0.594) (0.652) (0.575)

Growth in Experience 0.836∗∗∗ 0.824∗∗∗ 0.836∗∗∗ 0.823∗∗∗

(0.0299) (0.0284) (0.0297) (0.0282)

Growth in High School share -0.0662 -0.0830 -0.0692 -0.0860
(0.0903) (0.0848) (0.0883) (0.0830)

Growth in Master’s share 0.254∗∗∗ 0.257∗∗∗ 0.252∗∗∗ 0.255∗∗∗

(0.0355) (0.0356) (0.0355) (0.0356)

Growth in Doctorate share 2.669∗∗ 2.385∗∗ 2.624∗∗ 2.345∗∗

(1.282) (1.116) (1.253) (1.090)
Fixed Effects:
– Region ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
– Industry ✓ ✓
First Stage F-Stat 26.1 26.84 27.31 28.16
Observations 22,064 22,064 22,071 22,071

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is the growth in establishment AI vacancies between 2010-12 and 2017-19, approximated by the change

in the inverse hyperbolic sine. Likewise the dependent variables are the change in the inverse hyperbolic sine of the respective

establishment-level outcomes. Each coefficient therefore represents the percentage point impact upon the outcome variable of a

one percent increase in establishment AI hiring. The latter is instrumented by establishment AI exposure. This is calculated as

the standardized average of occupation AI exposure (from Webb 2020), over the occupations for which the establishment posts

vacancies in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022).
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Table B.8: Impact of AI adoption on establishment non-AI education and experience

Growth in Non-AI

Postgraduate Vacancy Share

Growth in Non-AI

Years of Experience

(1) (2) (3) (4)
Growth in AI Vacancies -0.225 -0.319 -1.065∗∗∗ -0.691∗∗

(0.224) (0.206) (0.379) (0.302)
Fixed Effects:
– Region ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
– Industry ✓ ✓
First Stage F-Stat
Observations 25.11994 25.87232 25.11994 25.87232
N 22,244 22,244 22,244 22,244

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is the growth in establishment AI vacancies between 2010-12 and 2017-19, approximated by the change

in the inverse hyperbolic sine. Likewise the dependent variables are the change in the inverse hyperbolic sine of the respective

establishment-level outcomes. Each coefficient therefore represents the percentage point impact upon the outcome variable of a

one percent increase in establishment AI hiring. The latter is instrumented by establishment AI exposure. This is calculated as

the standardized average of occupation AI exposure (from Webb 2020), over the occupations for which the establishment posts

vacancies in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022). Non-AI Postgraduate

Vacancy Share is defined as the establishment-level share of non-AI posts requiring either a Master’s or a Doctorate.

Table B.9: Second stage: Impact of AI adoption on establishment abstract and routine tasks
following Autor & Dorn (2013)

Growth in Abstract Tasks Growth in Routine Tasks

(1) (2) (3) (4) (5) (6)
Growth in AI Vacancies -1.124∗∗∗ -1.530∗∗∗ -1.140∗∗∗ -0.203 -0.0587 -0.138

(0.329) (0.409) (0.326) (0.189) (0.234) (0.187)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 26.06 26.31 27.17 26.06 26.31 27.17
Observations 22,251 22,251 22,251 22,251 22,251 22,251

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is the growth in establishment AI vacancies between 2010-12 and 2017-19, approximated by the change

in the inverse hyperbolic sine. Likewise the dependent variables are the change in the inverse hyperbolic sine of the respective

establishment-level outcomes. We use the occupational task scores for abstract, routine, and manual tasks from Autor & Dorn

(2013) (based on data from the Dictionary of Occupational Titles 1977) and map occ1990dd occupations to NCO04 occupations.

Scores are standardised as in Acemoglu & Autor (2011). Each coefficient therefore represents the percentage point impact upon the

outcome variable of a one percent increase in establishment AI hiring. The latter is instrumented by establishment AI exposure.

This is calculated as the standardized average of occupation AI exposure (from Webb 2020), over the occupations for which the

establishment posts vacancies in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022).
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Table B.10: Second stage: Impact of AI adoption on establishment abstract and routine tasks
following Autor & Dorn (2013), by occupation group

Growth in Abstract Tasks

Personal, Clerks Associate Professionals Managers
Sales and Security Professionals

Growth in AI Vacancies -1.467*** -0.346 1.731*** -0.649*** -5.232***
(0.327) (0.213) (0.335) (0.218) (1.133)

Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓ ✓
First Stage F-Stat 27.17 27.17 27.17 27.17 27.17
Observations 22,251 22,251 22,251 22,251 22,251

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is the growth in establishment AI vacancies between 2010-12 and 2017-19, approximated by the change

in the inverse hyperbolic sine. Likewise the dependent variables are the change in the inverse hyperbolic sine of the respective

establishment-level outcomes. We use the occupational task scores for abstract, routine, and manual tasks from Autor & Dorn

(2013) (based on data from the Dictionary of Occupational Titles 1977) and map occ1990dd occupations to NCO04 occupations.

Scores are standardised as in Acemoglu & Autor (2011). Each coefficient therefore represents the percentage point impact upon the

outcome variable of a one percent increase in establishment AI hiring. The latter is instrumented by establishment AI exposure.

This is calculated as the standardized average of occupation AI exposure (from Webb 2020), over the occupations for which the

establishment posts vacancies in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022).

Table B.11: AI adoption at the district level

AI Vacancies Non-AI Vacancies Vacancies Non-AI Wages Wages

(1) (2) (3) (4) (5)
First stage:

AI Exposure 0.147∗∗∗

(0.0402)

Second stage:

Growth in AI Vacancies 0.143 0.144 -0.436∗ -0.433∗

(0.337) (0.337) (0.230) (0.230)
First Stage F-Stat 13.34 13.34 13.57 13.57
Observations 399 399 399 399 399

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the district level. The

dependent variables are the growth between 2010-12 and 2017-19 in district AI vacancies, non-AI vacancies, total vacancies, non-AI

wages, and total wages, each approximated by the change in the inverse hyperbolic sine. The independent variable for the first stage

is district AI exposure, calculated as the standardized average of occupation AI exposure (from Webb 2020), over the occupations

for which the district posts vacancies in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu et al.

(2022). The first two coefficients therefore represent the percentage point impact on AI hiring of a one-standard deviation rise in

AI exposure. The independent variable for the second stage is the growth in district AI vacancies between 2010-12 and 2017-19,

approximated by the change in the inverse hyperbolic sine. The latter four coefficients therefore represent the percentage point

impact upon the outcome variable of a one percent increase in district AI hiring, instrumented by district AI exposure.
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Table B.12: AI adoption at the district level, administrative employment and wage data

AI Vacancies Vacancies Wages

(1) (2) (3) (4) (5)
First stage:

AI Exposure 0.147∗∗∗

(0.0402)

Second stage:

Growth in AI Vacancies -0.376 -0.944 -0.234 0.0337
(0.470) (0.590) (0.261) (0.296)

Fixed Effects:
– State ✓ ✓
First Stage F-Stat 13.34 13.33 13.34 13.33
Observations 399 399 398 399 398

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the district level. The

dependent variables are the growth between 2010-12 and 2017-19 in district AI vacancies (from the vacancies data), vacancies

(from administrative datasets), and total wages(likewise from administrative datasets), each approximated by the change in the

inverse hyperbolic sine. The independent variable for the first stage is district AI exposure, calculated as the standardized average of

occupation AI exposure (from Webb 2020), over the occupations for which the district posts vacancies in 2010-12 (from the vacancies

data), weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022). The first coefficient therefore

represents the percentage point impact on AI hiring of a one-standard deviation rise in AI exposure. The independent variable for

the second stage is the growth in district AI vacancies between 2010-12 and 2017-19 (from the vacancies data), approximated by the

change in the inverse hyperbolic sine. The latter four coefficients therefore represent the percentage point impact upon the outcome

variable of a one percent increase in district AI hiring, instrumented by district AI exposure.
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Figure B.10: Impact of AI exposure on the non-AI share of establishments’ posts

Notes: This graph shows the relationship between AI exposure and the non-AI share of establishments’ posts, using an inverse

hyperbolic sine scale for the y-axis.
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Figure B.11: Impact of AI demand on the wage offer distribution in all posts

Notes: This coefficient plot shows the impact of increased establishment AI demand on wage growth over time across the distribution

of establishment wage offers. Each coefficient is from a regression of type (5) in Appendix Table B.7. In other words, each coefficient

represents the percentage point impact of a 1% higher growth in establishment AI demand on wage growth over time for a given

percentile of the wage offer distribution. We report the 1st and 99th percentile of the wage offer distribution and deciles in between

the two extremes, alongside 95% confidence intervals. As in Appendix Table B.7, AI demand is instrumented with AI exposure.

This is calculated as the standardized average of occupation AI exposure (from Webb 2020), over the occupations for which the

establishment posts vacancies in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022).

Standard errors are clustered at the firm level, and we include region, firm decile and industry fixed effects. Since AI posts make up

only a small share of all roles in most establishments, the pattern is very similar across the distributions for all posts and for non-AI

posts only.
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Figure B.12: Impact of 1% higher establishment AI hiring growth on verb usage by class, keeping
only top 1% highest paid jobs within establishments

Notes: This coefficient plot shows the impact of increased establishment AI demand on verb share growth
between 2010-2012 and 2017-2019, where verb shares are formed from counting verbs in job descriptions of job
ads. Point estimates accompanied by 95% and 90% confidence intervals. Each coefficient is from a regression of
type (2) in Table 5.1. Here, the outcome variable is growth in the IHS-transformed share of verbs from the
respective section or class. In other words, each coefficient represents the percentage point impact of a 1%
higher growth in establishment AI demand on verb share growth. AI demand is instrumented by AI exposure.
This is calculated as the standardized average of occupation AI exposure (from Webb 2020), over the
occupations for which the establishment posts vacancies in 2010-12, weighted by the number of vacancies posted
per occupation, as in Acemoglu et al. (2022). Standard errors are clustered at the firm level, and we include
region, firm decile and industry fixed effects.
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Figure B.13: Impact of 1% higher establishment AI hiring growth on verb usage by section
within Intellectual Faculties, keeping only top 1% highest paid jobs within establishments

Notes: This coefficient plot shows the impact of increased establishment AI demand on verb share growth
between 2010-2012 and 2017-2019, where verb shares are formed from counting verbs in job descriptions of job
ads. Point estimates accompanied by 95% and 90% confidence intervals. Each coefficient is from a regression of
type (2) in Table 5.1. Here, the outcome variable is growth in the IHS-transformed share of verbs from the
respective section or class. In other words, each coefficient represents the percentage point impact of a 1%
higher growth in establishment AI demand on verb share growth. AI demand is instrumented by AI exposure.
This is calculated as the standardized average of occupation AI exposure (from Webb 2020), over the
occupations for which the establishment posts vacancies in 2010-12, weighted by the number of vacancies posted
per occupation, as in Acemoglu et al. (2022). Standard errors are clustered at the firm level, and we include
region, firm decile and industry fixed effects.
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B.3 Short-term impacts

Table ?? shows the probit results: we regress lagged establishment characteristics on AI

adoption and form predicted values as propensity scores. Adopters are larger and more mature

establishments with a higher share of highly-skilled workers hired in the past. Figure B.14

repeats the propensity score matching event study for hiring at the district level.

Table B.13: Probit regression on establishment AI adoption

AI adoption
Firmsize Decile -0.0675∗∗∗

(0.0121)
Firm age 0.0367∗∗∗

(0.00647)
Hiring 0.259∗∗∗

(0.0153)
Postgraduate Share 9.895∗∗∗

(3.067)
Median Salary -10.75∗

(5.775)
Median Salary Growth -0.100∗∗∗

(0.0285)
90th Percentile of Salary 0.118∗∗

(0.0589)
Growth of 90th Percentile of Salary 0.0591

(0.0394)
99th Percentile of Salary 0.429∗∗∗

(0.0497)
Growth of 99th Percentile of Salary -0.188∗∗∗

(0.0330)
Salary Dispersion -0.00000106∗∗∗

(0.000000231)
Median Experience -0.556∗∗∗

(0.0624)
Growth of Median Experience 0.457∗∗∗

(0.141)
90th Percentile of Experience -0.308∗∗∗

(0.0999)
Growth of 90th Percentile of Experience 0.0819

(0.0741)
99th Percentile of Experience -2.024∗∗∗

(0.626)
Growth of 99th Percentile of Experience -0.159∗∗

(0.0639)
Experience Dispersion 0.170∗∗∗

(0.0493)
N 111044

Notes: Results of a probit regression to compute propensity scores when matching AI adopters to never adopters as described in the

short-term results section. All independent variables are lagged by one year. Included but not displayed is a set of year dummies for

all years except 2019, and the following interactions: Square of Postgraduate Share, Square and Cube of Median Salary, Square

of Median Salary Growth, Square of Growth of 90th Percentile of Salary, Square and Cube of Salary Dispersion, Growth of 99th

Percentile of Salary x Salary Dispersion, Median Salary x 99th Percentile of Experience, Growth of Median Experience x 99th

Percentile of Experience, Growth of Median Experience x 99th Percentile of Experience x Median Salary. Standard errors clustered

at the establishment-level in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Figure B.14: Non-AI hiring following AI adoption at the district level

Notes: Two way fixed effects on a balanced panel. The outcome variable is IHS-transformed non-AI hiring by region and district,

respectively. At the region level, propensity scores from a probit regression on lagged total hiring, lagged median salary growth, firm

age, and year dummies for 2013, 2015, 2016, and 2018. At the district level, propensity scores from a probit regression on lagged

median salary, firm age, median salary growth, and year dummies for 2023 and 2013. We use three leads and lags, leaving out the

first lead (t-1) as the base period, and cluster standard errors on region and district, respectively. AI adoption leads to reduced

non-AI hiring on the region level, but has no effects on the district level.
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Appendix C Robustness

In this section, we demonstrate that our results are generally robust to alternative AI exposure

measures and various controls and alternative specifications. We also find some similar findings

in other administrative datasets, as discussed in the main text.

C.1 Shift-share validity and inference

We construct our instrument from baseline (2010-2012) occupation shares at the establishment

level and their respective exposure to AI according to Webb (2020):

Exposurefr,t0 =
∑
o

PostSharet0fro · ExposureMeasureo (C.1)

This is a Bartik style instrument with occupation shares in the pre-AI baseline that capture

an establishment’s exposure to a common shock: occupation-level advances in AI. We can test

for the plausible exogeneity of the baseline shares following Goldsmith-Pinkham et al. (2020),

who propose several validity checks by analogy with GMM and DiD: investigating correlates of

shares, examing pre-trends, and comparing different estimators and running over-identification

tests. We find that all three provide support for the validity of our instrument.

Test #1: Investigating correlates of shares. We investigate the extent to which the

baseline shares correlate with baseline controls, which could themselves affect hiring and wage

offer trends. To this end, we regress the instrument on baseline controls (the structure of

required education, experience, and wage offers in an establishment). Table C.1 shows the

results, demonstrating that this does not appear to be an issue for the overall instrument. Some

individual occupation shares warrant the inclusion of controls, in particular experience, and we

thus show robustness to including these controls in our main specification.

Test #2: Examining pre-trends. Most of our results are derived from the long-difference

specification discussed above. Therefore, we do not have a pre-period and cannot test for

pre-trends. This corresponds to the first empirical example given in Goldsmith-Pinkham et al.

(2020), where the shares are fixed in a time period from which we are forming the first difference,

such that there is no pre-period. We can, however, ask whether our instrument, which is

based on baseline occupation shares, predicts year-on-year employment or salary growth. We

regress annual employment and wage growth from 2014 onwards (so that the first differences

do not contain the baseline years, 2010-2012, from whose occupation shares the instrument
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Table C.1: Investigating correlates of shares

Overall Instrument

(1) (2) (3) (4)
Share of Highschool Education -0.166 0.0203 -0.0615 0.0253

(0.192) (0.0929) (0.146) (0.0926)

Share of Undergraduate Education -0.232 0.00812 -0.122 0.0131
(0.194) (0.0915) (0.146) (0.0912)

Share of Postgraduate Education -0.221 0.0403 -0.0999 0.0454
(0.195) (0.0933) (0.147) (0.0928)

Mean Salary 4.86e-09 4.96e-09 4.19e-09 4.97e-09
(4.59e-09) (4.85e-09) (4.37e-09) (4.87e-09)

Mean Experience -0.00217 0.00524 0.00334 0.00512
(0.00823) (0.00442) (0.00590) (0.00445)

Fixed Effects:
– Region ✓ ✓ ✓
– Industry ✓ ✓
– Firm Decile ✓ ✓
First Stage F-Stat
Observations 22,201 22,052 22,052 22,052

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

dependent variable is establishment AI exposure. This is calculated as the standardized average of occupation AI exposure (from

Webb 2020), over the occupations for which the establishment posts vacancies in 2010-12, weighted by the number of vacancies

posted per occupation, as in Acemoglu et al. (2022). The independent variables are baseline controls.
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is constructed) on the instrument. The results are shown in Table C.2: we do not find any

indication of pre-trends: baseline exposure to AI does not predict differential growth rates. This

remains the case when including the set of fixed effects included in our main regressions.

Table C.2: Examining pre-trends for the instrument

Growth in Non-AI Vacancies Growth in Non-AI Median Wage

(1) (2) (3) (4) (5) (6) (7) (8)
Instrument 0.000223 0.00617 0.00477 0.00622 0.0106 0.0272 0.0283 0.0275

(0.0112) (0.00599) (0.0107) (0.00602) (0.0271) (0.0175) (0.0270) (0.0177)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat
Observations 296,730 296,730 296,730 296,730 296,730 296,730 296,730 296,730

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is establishment AI exposure. This is calculated as the standardized average of occupation AI exposure (from

Webb 2020), over the occupations for which the establishment posts vacancies in 2010-12, weighted by the number of vacancies

posted per occupation, as in Acemoglu et al. (2022). The dependent variables are year-on year growth for 2013-2019.

Test #3: Alternative estimators and over-identification tests. We next compare a

range of estimators (OLS, a range of IV estimators, a machine learning estimator and a Fuller-

like estimator) and run over-identification tests. Following Goldsmith-Pinkham et al. (2020),

we compare Bartik to OLS, over-identified TSLS, using each share as a separate instrument,

the Modified Bias-corrected TSLS (MBTSLS) estimator, the Limited Information Maximum

Likelihood (LIML) estimator, and the HFUL estimator. Similarity in results between HFUL

and LIML on the one hand, and MBTSLS and over-identified TSLS on the other hand supports

the validity of our instrument. Bartik estimates are similar to LIML estimates when including

establishment controls. Results from HFUL and MBTSLS are also similar, further supporting

our instrument. The comparison of alternative estimators suggests validity of our instrument as

we find estimates to be quite similar.

We then run over-identification tests for the HFUL, LIML, and over-identified TSLS estima-

tors, where the null hypothesis is the validity of the over-identifying restrictions. These tests

do not reject the null hypothesis when including controls. For misspecification tests, we test

whether Bartik is sensitive to the inclusion of controls. Similarity in estimates would support

our instrument, and indeed we find support for our instrument’s validity.

Adjusted standard errors. In addition to validity, a further issue with shift-share instruments

concerns standard errors that are correlated. Table C.3 addresses this concern by computing
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standard errors according to the correction developed by Adão et al. (2019) and finds that our

results are robust.

Table C.3: Second stage: Impact of AI adoption on establishment non-AI vacancies. Adão,
Kolesár, and Morales (2019) standard errors.

Growth in Non-AI Vacancies Growth in Total Vacancies

(1) (2) (3) (4) (5) (6)
Growth in AI Vacancies -3.574∗∗ -5.942∗ -3.605∗∗ -3.534∗∗ -5.909∗ -3.566∗∗

(1.666) (3.436) (1.479) (1.663) (3.437) (1.475)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 26.06 26.31 27.17 26.06 26.31 27.17
Observations 22,251 22,251 22,251 22,251 22,251 22,251

Notes: Standard errors calculated as in Adão, Kolesár, and Morales (2019) in parentheses. * p <0.10, ** p <0.05, *** p <0.01.

Standard errors clustered at the firm level. The independent variable is the growth in establishment AI vacancies between 2010-12

and 2017-19, approximated by the change in the inverse hyperbolic sine. Likewise the dependent variables are the change in the

inverse hyperbolic sine of the respective establishment-level outcomes. Each coefficient therefore represents the percentage point

impact upon the outcome variable of a one percent increase in establishment AI hiring. The latter is instrumented by establishment

AI exposure. This is calculated as the standardized average of occupation AI exposure (from Webb 2020), over the occupations for

which the establishment posts vacancies in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu

et al. (2022).

C.2 Alternative exposure measures and alternative specifications

This section provides the key results repeated using the alternative exposure measures, as well

as a series of alternative specifications, as discussed in Section 6.
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Table C.4: First stage: Impact of AI exposure on establishment AI adoption – alternative
exposure measures

Growth in AI Vacancies

(1) (2) (3) (4)
AI Exposure 0.0202∗∗∗ 0.0142∗∗∗ -0.0151∗∗∗ -0.0102∗∗∗

(0.00342) (0.00308) (0.00265) (0.00276)
Exposure Measure Felten et al. Felten et al. SML SML
Fixed Effects:
– Region ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
– Industry ✓ ✓
R2 .0349 .0481 .0338 .0476
Observations 22,251 22,251 22,251 22,251

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

dependent variable is the growth in establishment AI vacancies between 2010-12 and 2017-19, approximated by the change in the

inverse hyperbolic sine. The independent variable is establishment AI exposure, calculated as the standardized average of occupation

AI exposure (from either Felten et al. 2018, or Mani et al. 2020 building on Brynjolfsson & Mitchell 2017), over the occupations for

which the establishment posts vacancies in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu

et al. (2022). Each coefficient therefore represents the proportional impact on AI hiring of a one-standard deviation rise in AI

exposure.

Table C.5: Second stage: Impact of AI adoption on establishment non-AI vacancies – Felten et
al. exposure measure

Growth in Non-AI Vacancies Growth in Total Vacancies

(1) (2) (3) (4)
Growth in AI Vacancies 1.076 0.698 1.095 0.714

(0.746) (1.089) (0.744) (1.087)
Fixed Effects:
– Region ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
– Industry ✓ ✓
– Firm
First Stage F-Stat 34.97 21.25 34.97 21.25
Observations 22,251 22,251 22,251 22,251

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is the growth in establishment AI vacancies between 2010-12 and 2017-19, approximated by the change

in the inverse hyperbolic sine. Likewise the dependent variables are the change in the inverse hyperbolic sine of the respective

establishment-level outcomes. Each coefficient therefore represents the percentage point impact upon the outcome variable of a one

percent increase in establishment AI hiring. The latter is instrumented by establishment AI exposure. This is calculated as the

standardized average of occupation AI exposure (from Felten et al. 2018), over the occupations for which the establishment posts

vacancies in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022).
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Table C.6: Second stage: Impact of AI adoption on establishment non-AI vacancies, by
occupation group – Felten et al. exposure measure

Growth in Non-AI Vacancies

Personal, Clerks Associate Professionals Managers
Sales & Security Professionals

Growth in AI Vacancies 9.059∗∗∗ -1.298∗ 7.243∗∗∗ -8.499∗∗∗ -3.633∗∗∗

(2.035) (0.670) (1.821) (2.256) (1.385)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓ ✓
First Stage F-Stat 21.25 21.25 21.25 21.25 21.25
Observations 22,251 22,251 22,251 22,251 22,251

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is the growth in establishment AI vacancies between 2010-12 and 2017-19, approximated by the change

in the inverse hyperbolic sine. Likewise the dependent variables are the change in the inverse hyperbolic sine of the respective

establishment-level outcomes. Occupation groups are 1-digit occupation groups from the NCO04. Each coefficient therefore

represents the percentage point impact upon the outcome variable of a one percent increase in establishment AI hiring. The latter is

instrumented by establishment AI exposure. This is calculated as the standardized average of occupation AI exposure (from Felten

et al. 2018), over the occupations for which the establishment posts vacancies in 2010-12, weighted by the number of vacancies

posted per occupation, as in Acemoglu et al. (2022).

Table C.7: Second stage: Impact of AI adoption on establishment routine and non-routine tasks
– Felten et al. exposure measure

Growth in Non-Routine Tasks Growth in Routine Tasks

(1) (2) (3) (4) (5) (6)
Growth in AI Vacancies -1.526∗∗∗ -1.338∗∗∗ -1.529∗∗∗ 0.851∗∗ 0.289 0.813∗∗

(0.541) (0.404) (0.557) (0.335) (0.213) (0.337)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 22.17 34.97 21.25 22.17 34.97 21.25
Observations 22,251 22,251 22,251 22,251 22,251 22,251

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is the growth in establishment AI vacancies between 2010-12 and 2017-19, approximated by the change

in the inverse hyperbolic sine. Likewise the dependent variables are the change in the inverse hyperbolic sine of the respective

establishment-level outcomes. We average standardised routine and non-routine O*NET task contents by occupation, and form

establishments’ routine and non-routine task demand by weighting occupations by their standardised routine and non-routine

scores. Each coefficient therefore represents the percentage point impact upon the outcome variable of a one percent increase in

establishment AI hiring. The latter is instrumented by establishment AI exposure. This is calculated as the standardized average

of occupation AI exposure (from Felten et al. 2018), over the occupations for which the establishment posts vacancies in 2010-12,

weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022).
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Table C.8: Second stage: Impact of AI adoption on establishment non-AI wages – Felten et al.
exposure measure

Growth in Non-AI Median Wage Growth in Overall Median Wage

(1) (2) (3) (4)
Growth in AI Vacancies -1.108∗∗ -1.512∗∗ -1.133∗∗ -1.567∗∗

(0.441) (0.675) (0.452) (0.698)
Fixed Effects:
– Region ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
– Industry ✓ ✓
– Firm
First Stage F-Stat 36.02 22.15 35.05 21.22
Observations 22,064 22,064 22,071 22,071

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is the growth in establishment AI vacancies between 2010-12 and 2017-19, approximated by the change

in the inverse hyperbolic sine. Likewise the dependent variables are the change in the inverse hyperbolic sine of the respective

establishment-level outcomes. Each coefficient therefore represents the percentage point impact upon the outcome variable of a one

percent increase in establishment AI hiring. The latter is instrumented by establishment AI exposure. This is calculated as the

standardized average of occupation AI exposure (from Felten et al. 2018), over the occupations for which the establishment posts

vacancies in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022).

Table C.9: Second stage: Impact of AI adoption on establishment non-AI vacancies, controlling
for baseline share of software engineers

Growth in Non-AI Vacancies Growth in Total Vacancies

(1) (2) (3) (4) (5) (6)
Growth in AI Vacancies -4.245∗∗∗ -7.235∗∗∗ -4.196∗∗∗ -4.205∗∗∗ -7.202∗∗∗ -4.157∗∗∗

(1.410) (2.100) (1.371) (1.409) (2.100) (1.369)
Covariates:
Share of Software Engineers ✓ ✓ ✓ ✓ ✓ ✓
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 22.24 20.91 22.96 22.24 20.91 22.96
Observations 22,251 22,251 22,251 22,251 22,251 22,251

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is the growth in establishment AI vacancies between 2010-12 and 2017-19, approximated by the change

in the inverse hyperbolic sine. Likewise the dependent variables are the change in the inverse hyperbolic sine of the respective

establishment-level outcomes. As an additional control, the baseline share of vacancies for software engineers in each establishment

is included. Software engineers are captured by the NCO04 4-digit occupations 2131 (Computer Systems Designers and Analysts),

2132 (Computer Programmers), and 2139 (Computer Professionals, n.e.c.). Each coefficient therefore represents the percentage point

impact upon the outcome variable of a one percent increase in establishment AI hiring. The latter is instrumented by establishment

AI exposure. This is calculated as the standardized average of occupation AI exposure (from Webb 2020), over the occupations for

which the establishment posts vacancies in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu

et al. (2022).

34



Table C.10: Second stage: Impact of AI adoption on establishment non-AI wages, controlling
for baseline share of software engineers

Growth in Non-AI Median Wage Growth in Overall Median Wage

(1) (2) (3) (4) (5) (6)
Growth in AI Vacancies -3.080∗∗∗ -3.645∗∗∗ -2.994∗∗∗ -2.999∗∗∗ -3.544∗∗∗ -2.912∗∗∗

(0.950) (1.119) (0.911) (0.914) (1.075) (0.876)
Covariates:
Share of Software Engineers ✓ ✓ ✓ ✓ ✓ ✓
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 21.67 20.41 22.36 22.82 21.45 23.54
Observations 22,064 22,064 22,064 22,071 22,071 22,071

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is the growth in establishment AI vacancies between 2010-12 and 2017-19, approximated by the change

in the inverse hyperbolic sine. Likewise the dependent variables are the change in the inverse hyperbolic sine of the respective

establishment-level outcomes. As an additional control, the baseline share of vacancies for software engineers in each establishment

is included. Software engineers are captured by the NCO04 4-digit occupations 2131 (Computer Systems Designers and Analysts),

2132 (Computer Programmers), and 2139 (Computer Professionals, n.e.c.). Each coefficient therefore represents the percentage point

impact upon the outcome variable of a one percent increase in establishment AI hiring. The latter is instrumented by establishment

AI exposure. This is calculated as the standardized average of occupation AI exposure (from Webb 2020), over the occupations for

which the establishment posts vacancies in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu

et al. (2022).
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Table C.11: Second stage: Impact of AI adoption on establishment non-AI vacancies, controlling
for baseline share of sales & admin vacancies

Growth in Non-AI Vacancies Growth in Total Vacancies

(1) (2) (3) (4) (5) (6)
Growth in AI Vacancies -7.877∗∗ -16.97∗ -7.881∗∗ -7.819∗∗ -16.91∗ -7.825∗∗

(3.273) (8.718) (3.219) (3.268) (8.710) (3.214)
Covariates:
Share of Sales & Admin ✓ ✓ ✓ ✓ ✓ ✓
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 8.529 4.447 8.784 8.529 4.447 8.784
Observations 22,251 22,251 22,251 22,251 22,251 22,251

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is the growth in establishment AI vacancies between 2010-12 and 2017-19, approximated by the change

in the inverse hyperbolic sine. Likewise the dependent variables are the change in the inverse hyperbolic sine of the respective

establishment-level outcomes. As an additional control, the baseline share of vacancies in each establishment belonging to the broad

occupations of either sales or administration is included. We use the occ1990dd occupation classification (by Autor & Dorn 2013) in

defining retail sales and clerical jobs as sales and administrative. Each coefficient therefore represents the percentage point impact

upon the outcome variable of a one percent increase in establishment AI hiring. The latter is instrumented by establishment AI

exposure. This is calculated as the standardized average of occupation AI exposure (from Webb 2020), over the occupations for

which the establishment posts vacancies in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu

et al. (2022).

36



Table C.12: Second stage: Impact of AI adoption on establishment non-AI wages, controlling
for baseline share of sales & admin vacancies

Growth in Non-AI Median Wage Growth in Overall Median Wage

(1) (2) (3) (4) (5) (6)
Growth in AI Vacancies -2.991∗∗ -4.922∗ -2.932∗∗ -2.862∗∗ -4.597∗ -2.796∗∗

(1.513) (2.960) (1.460) (1.420) (2.652) (1.367)
Covariates:
Share of Sales & Admin ✓ ✓ ✓ ✓ ✓ ✓
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 7.875 4 8.153 8.556 4.527 8.872
Observations 22,064 22,064 22,064 22,071 22,071 22,071

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is the growth in establishment AI vacancies between 2010-12 and 2017-19, approximated by the change

in the inverse hyperbolic sine. Likewise the dependent variables are the change in the inverse hyperbolic sine of the respective

establishment-level outcomes. As an additional control, the baseline share of vacancies in each establishment belonging to the broad

occupations of either sales or administration is included. We use the occ1990dd occupation classification (by Autor & Dorn 2013) in

defining retail sales and clerical jobs as sales and administrative. Each coefficient therefore represents the percentage point impact

upon the outcome variable of a one percent increase in establishment AI hiring. The latter is instrumented by establishment AI

exposure. This is calculated as the standardized average of occupation AI exposure (from Webb 2020), over the occupations for

which the establishment posts vacancies in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu

et al. (2022).

Table C.13: First stage: Impact of AI exposure on establishment AI adoption dummy

Adoption of AI

(1) (2)
Establishment AI Exposure 0.00965∗∗∗ 0.0106∗∗∗

(0.00149) (0.00157)
Fixed Effects:
– Region ✓ ✓
– Firm Decile ✓ ✓
– Industry ✓
R2 .0434 .062
Observations 22,251 22,251

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

dependent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the baseline period, but posted

AI vacancies in the endline period. The independent variable is establishment AI exposure, calculated as the standardized average of

occupation AI exposure (from Webb 2020), over the occupations for which the establishment posts vacancies in 2010-12, weighted

by the number of vacancies posted per occupation, as in Acemoglu et al. (2022). Each coefficient therefore represents the impact on

the propensity to adopt AI of a one-standard deviation rise in AI exposure.
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Table C.14: Second stage: Impact of AI adoption dummy on establishment non-AI vacancies

Growth in Non-AI Vacancies Growth in Total Vacancies

(1) (2) (3) (4)
Adoption of AI -12.02∗∗∗ -7.534∗∗∗ -11.95∗∗∗ -7.453∗∗∗

(2.845) (2.095) (2.851) (2.097)
Fixed Effects:
– Region ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
– Industry ✓ ✓
First Stage F-Stat 41.83 45.62 41.83 45.62
Observations 22,251 22,251 22,251 22,251

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the baseline period, but

posted AI vacancies in the endline period. The dependent variables are the change in the inverse hyperbolic sine of the respective

establishment-level outcomes. Each coefficient therefore represents the percentage point impact upon the outcome variable of the

adoption of AI between baseline and endline. The latter is instrumented by establishment AI exposure. This is calculated as the

standardized average of occupation AI exposure (from Webb 2020), over the occupations for which the establishment posts vacancies

in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022).

Table C.15: Second stage: Impact of AI adoption dummy on establishment non-AI wages

Growth in Non-AI Median Wage Growth in Overall Median Wage

(1) (2) (3) (4)
Adoption of AI -6.351∗∗∗ -5.514∗∗∗ -6.089∗∗∗ -5.273∗∗∗

(1.630) (1.423) (1.566) (1.366)
Fixed Effects:
– Region ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
– Industry ✓ ✓
First Stage F-Stat 42.91 46.86 43.12 47.02
Observations 22,064 22,064 22,071 22,071

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the baseline period, but

posted AI vacancies in the endline period. The dependent variables are the change in the inverse hyperbolic sine of the respective

establishment-level outcomes. Each coefficient therefore represents the percentage point impact upon the outcome variable of the

adoption of AI between baseline and endline. The latter is instrumented by establishment AI exposure. This is calculated as the

standardized average of occupation AI exposure (from Webb 2020), over the occupations for which the establishment posts vacancies

in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022).
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Table C.16: Second stage: Impact of AI adoption dummy on establishment non-AI wages,
controlling for job profiles

Growth in Non-AI Median Wage Growth in Overall Median Wage

(1) (2) (3) (4)
Adoption of AI -4.398∗∗∗ -4.124∗∗∗ -4.244∗∗∗ -3.968∗∗∗

(1.272) (1.150) (1.223) (1.105)

Growth in Experience 0.829∗∗∗ 0.819∗∗∗ 0.829∗∗∗ 0.818∗∗∗

(0.0286) (0.0274) (0.0284) (0.0272)

Growth in High School share -0.0916 -0.106 -0.0953 -0.110
(0.0804) (0.0779) (0.0782) (0.0758)

Growth in Master’s share 0.251∗∗∗ 0.254∗∗∗ 0.250∗∗∗ 0.252∗∗∗

(0.0357) (0.0356) (0.0356) (0.0355)

Growth in Doctorate share 2.562∗∗ 2.305∗∗ 2.489∗∗ 2.235∗∗

(1.185) (1.060) (1.147) (1.025)
Fixed Effects:
– Region ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
– Industry ✓ ✓
First Stage F-Stat 43.98 47.61 44.13 47.72
Observations 22,064 22,064 22,071 22,071

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the baseline period, but

posted AI vacancies in the endline period. The dependent variables are the change in the inverse hyperbolic sine of the respective

establishment-level outcomes. Each coefficient therefore represents the percentage point impact upon the outcome variable of the

adoption of AI between baseline and endline. The latter is instrumented by establishment AI exposure. This is calculated as the

standardized average of occupation AI exposure (from Webb 2020), over the occupations for which the establishment posts vacancies

in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022).
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Table C.17: Second stage: Impact of AI adoption on establishment non-AI vacancies, 2013-15
to 2017-19

Growth in Non-AI Vacancies Growth in Total Vacancies

(1) (2) (3) (4)
Growth in AI Vacancies -5.708∗∗∗ -3.741∗∗ -5.696∗∗∗ -3.722∗∗

(2.065) (1.627) (2.072) (1.632)
Fixed Effects:
– Region ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
– Industry ✓ ✓
First Stage F-Stat
Observations 24.882 23.11134 24.882 23.11134
N 38,490 38,490 38,490 38,490

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is the growth in establishment AI vacancies between 2013-15 and 2017-19, approximated by the change

in the inverse hyperbolic sine. Likewise the dependent variables are the change in the inverse hyperbolic sine of the respective

establishment-level outcomes. Each coefficient therefore represents the percentage point impact upon the outcome variable of a

one percent increase in establishment AI hiring. The latter is instrumented by establishment AI exposure. This is calculated as

the standardized average of occupation AI exposure (from Webb 2020), over the occupations for which the establishment posts

vacancies in 2013-15, weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022).

Table C.18: Second stage: Impact of AI adoption on establishment non-AI wages, 2013-15 to
2017-19

Growth in Non-AI Median Wage Growth in Overall Median Wage

(1) (2) (3) (4)
Growth in AI Vacancies -3.717∗∗∗ -3.590∗∗∗ -3.921∗∗∗ -3.791∗∗∗

(1.172) (1.115) (1.269) (1.210)
Fixed Effects:
– Region ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
– Industry ✓ ✓
First Stage F-Stat
Observations 28.3624 26.17782 24.97242 23.13824
N 38,249 38,249 38,281 38,281

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is the growth in establishment AI vacancies between 2013-15 and 2017-19, approximated by the change

in the inverse hyperbolic sine. Likewise the dependent variables are the change in the inverse hyperbolic sine of the respective

establishment-level outcomes. Each coefficient therefore represents the percentage point impact upon the outcome variable of a

one percent increase in establishment AI hiring. The latter is instrumented by establishment AI exposure. This is calculated as

the standardized average of occupation AI exposure (from Webb 2020), over the occupations for which the establishment posts

vacancies in 2013-15, weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022).
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Table C.19: Second stage: Impact of AI adoption on establishment non-AI wages, controlling
for job profiles, 2013-15 to 2017-19

Growth in Non-AI Median Wage Growth in Overall Median Wage

(1) (2) (3) (4)
Growth in AI Vacancies -3.548∗∗∗ -3.448∗∗∗ -3.738∗∗∗ -3.638∗∗∗

(1.135) (1.062) (1.224) (1.150)

Growth in Experience 0.753∗∗∗ 0.752∗∗∗ 0.757∗∗∗ 0.755∗∗∗

(0.0358) (0.0337) (0.0363) (0.0342)

Growth in High School share 0.0171 -0.00221 0.0224 0.00248
(0.105) (0.0994) (0.108) (0.102)

Growth in Master’s share 0.191∗∗∗ 0.192∗∗∗ 0.194∗∗∗ 0.196∗∗∗

(0.0373) (0.0376) (0.0384) (0.0387)

Growth in Doctorate share 1.447∗∗∗ 1.435∗∗∗ 1.545∗∗∗ 1.521∗∗∗

(0.496) (0.472) (0.598) (0.563)
Fixed Effects:
– Region ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
– Industry ✓ ✓
First Stage F-Stat 29.25 26.83 25.8 23.73
Observations 38,249 38,249 38,281 38,281

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is the growth in establishment AI vacancies between 2013-15 and 2017-19, approximated by the change

in the inverse hyperbolic sine. Likewise the dependent variables are the change in the inverse hyperbolic sine of the respective

establishment-level outcomes. Each coefficient therefore represents the percentage point impact upon the outcome variable of a

one percent increase in establishment AI hiring. The latter is instrumented by establishment AI exposure. This is calculated as

the standardized average of occupation AI exposure (from Webb 2020), over the occupations for which the establishment posts

vacancies in 2013-15, weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022).
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Table C.20: Employment results for ‘incumbents’ and ‘startups’

Growth in Non-AI Vacancies Growth in Total Vacancies

(1) (2) (3) (4) (5) (6)
Growth in AI Vacancies -3.043*** -2.530** -2.998* -3.035*** -2.520** -2.983*
Incumbents (1.146) (1.027) (1.808) (1.150) (1.030) (1.811)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 24.51 24.33 7.454 24.51 24.33 7.454
Observations 17,348 17,348 14,729 17,348 17,348 14,729

Growth in AI Vacancies -8.088 -17.32 -8.887 -8.053 -17.32 -8.853
Start-ups (7.710) (13.90) (7.827) (7.741) (13.96) (7.858)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 2.637 2.469 2.801 2.637 2.469 2.801
Observations 21,085 21,085 21,085 21,085 21,085 21,085

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is the growth in establishment AI vacancies between 2013-15 and 2017-19, approximated by the change

in the inverse hyperbolic sine. Likewise the dependent variables are the change in the inverse hyperbolic sine of the respective

establishment-level outcomes. In order to distinguish between start-ups and incumbents, we look at the shorter long difference

between 2013-15 and 2017-19. A start-up is an establishment that did not post in the baseline, 2010-12, and only started posting in

2013-15. An incumbent posted vacancies already in the baseline, 2010-12. Each coefficient therefore represents the percentage point

impact upon the outcome variable of a one percent increase in establishment AI hiring. The latter is instrumented by establishment

AI exposure. This is calculated as the standardized average of occupation AI exposure (from Webb 2020), over the occupations for

which the establishment posts vacancies in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu

et al. (2022).
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Table C.21: Wage results for ‘incumbents’ and ‘startups’

Growth in Non-AI Median Wage Growth in Overall Median Wage

(1) (2) (3) (4) (5) (6)
Growth in AI Vacancies -1.781*** -1.813*** -4.630** -1.824*** -1.858*** -4.645**
Incumbents (0.622) (0.619) (1.926) (0.640) (0.638) (1.931)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 25.64 25.58 7.519 24.48 24.35 7.529
Observations 17,259 17,259 14,648 17,266 17,266 14,652

Growth in AI Vacancies -9.946* -11.88* -9.754* -12.26 -14.77 -11.93
Start-ups (5.697) (6.913) (5.478) (8.323) (10.31) (7.880)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 4.131 4.12 4.326 2.668 2.558 2.837
Observations 20,934 20,934 20,934 20,959 20,959 20,959

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is the growth in establishment AI vacancies between 2013-15 and 2017-19, approximated by the change

in the inverse hyperbolic sine. Likewise the dependent variables are the change in the inverse hyperbolic sine of the respective

establishment-level outcomes. In order to distinguish between start-ups and incumbents, we look at the shorter long difference

between 2013-15 and 2017-19. A start-up is an establishment that did not post in the baseline, 2010-12, and only started posting in

2013-15. An incumbent posted vacancies already in the baseline, 2010-12. Each coefficient therefore represents the percentage point

impact upon the outcome variable of a one percent increase in establishment AI hiring. The latter is instrumented by establishment

AI exposure. This is calculated as the standardized average of occupation AI exposure (from Webb 2020), over the occupations for

which the establishment posts vacancies in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu

et al. (2022).
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Table C.22: Impact of AI adoption on establishment non-AI mean wages

Growth in

Non-AI Mean Wage

Growth in

Overall Mean Wage

(1) (2) (3) (4)
Growth in AI Vacancies -2.606∗∗∗ -1.785∗∗∗ -2.531∗∗∗ -1.746∗∗∗

(0.726) (0.544) (0.698) (0.526)
Controls for Experience & Education ✓ ✓
Fixed Effects:
– Region ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
First Stage F-Stat 26.39 26.93 27.71 28.25
Observations 22,064 22,064 22,071 22,071

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is the growth in establishment AI vacancies between 2010-12 and 2017-19, approximated by the change

in the inverse hyperbolic sine. Likewise the dependent variables are the change in the inverse hyperbolic sine of the respective

establishment-level outcomes. Each coefficient therefore represents the percentage point impact upon the outcome variable of a

one percent increase in establishment AI hiring. The latter is instrumented by establishment AI exposure. This is calculated as

the standardized average of occupation AI exposure (from Webb 2020), over the occupations for which the establishment posts

vacancies in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022). Models (2) and (4)

also control for changes in establishment job profiles over the period, specifically the mean number of years of experience required

and the shares of posts requiring different levels of education.

Table C.23: Second stage: Impact of AI adoption on establishment non-AI vacancies, weighted
(top 5% winsorized)

Growth in Non-AI Vacancies Growth in Total Vacancies

(1) (2) (3) (4)
Growth in AI Vacancies -1.523∗∗ -0.968∗ -1.500∗∗ -0.941∗

(0.628) (0.498) (0.627) (0.495)
Fixed Effects:
– Region ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
– Industry ✓ ✓
First Stage F-Stat
Observations 18.79682 16.22949 18.79682 16.22949
N 22,251 22,251 22,251 22,251

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. Establishments

are weighted by baseline number of posts, with the top 5% winsorized. The independent variable is the growth in establishment

AI vacancies between 2010-12 and 2017-19, approximated by the change in the inverse hyperbolic sine. Likewise the dependent

variables are the change in the inverse hyperbolic sine of the respective establishment-level outcomes. Each coefficient therefore

represents the percentage point impact upon the outcome variable of a one percent increase in establishment AI hiring. The latter is

instrumented by establishment AI exposure. This is calculated as the standardized average of occupation AI exposure (from Webb

2020), over the occupations for which the establishment posts vacancies in 2010-12, weighted by the number of vacancies posted per

occupation, as in Acemoglu et al. (2022).
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Table C.24: Second stage: Impact of AI adoption on establishment non-AI wages, weighted (top
5% winsorized)

Growth in Non-AI Median Wage Growth in Overall Median Wage

(1) (2) (3) (4)
Growth in AI Vacancies -0.512∗∗ -0.362∗∗ -0.507∗∗ -0.357∗

(0.210) (0.184) (0.208) (0.182)
Fixed Effects:
– Region ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
– Industry ✓ ✓
First Stage F-Stat
Observations 18.53311 15.95353 18.78698 16.24418
N 22,064 22,064 22,071 22,071

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. Establishments

are weighted by baseline number of posts, with the top 5% winsorized. The independent variable is the growth in establishment

AI vacancies between 2010-12 and 2017-19, approximated by the change in the inverse hyperbolic sine. Likewise the dependent

variables are the change in the inverse hyperbolic sine of the respective establishment-level outcomes. Each coefficient therefore

represents the percentage point impact upon the outcome variable of a one percent increase in establishment AI hiring. The latter is

instrumented by establishment AI exposure. This is calculated as the standardized average of occupation AI exposure (from Webb

2020), over the occupations for which the establishment posts vacancies in 2010-12, weighted by the number of vacancies posted per

occupation, as in Acemoglu et al. (2022).
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Figure C.1: Impact of establishment AI adoption on the wage offer distribution – Felten et al.
measure

(a) Non-AI posts only

(b) All posts

Notes: These coefficient plots show the impact of establishment AI adoption on the distribution of establishment wage offers. Each

coefficient in Panel (a) is from a regression of type (2) in Table B.7, and likewise each coefficient in Panel (b) is from a regression of

type (5). In other words, each coefficient represents the percentage point impact of a 1% increase in establishment AI demand upon

a given percentile of the wage distribution. As in Table B.7, AI demand is instrumented by AI exposure. This is calculated as the

standardized average of occupation AI exposure (from Felten et al. 2018), over the occupations for which the establishment posts

vacancies in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022). Standard errors are

clustered at the firm level, and we include region, firm decile and industry fixed effects. Since AI posts make up only a small share

of all roles in most establishments, the pattern is very similar across the two distributions.
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