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Abstract 

Sectoral differences are generally argued to be important for understanding cross-country 

productivity differences. In this paper we argue that traded versus non-traded is a key 

distinction as we find that productivity in the non-traded sector does not systematically vary 

with a country’s income level, compared to other two-way splits that are less distinctive. We 

base our analysis on newly developed measures of sectoral relative prices and productivity for 

84 countries across 3 years. These data incorporate several recent measurement advances to 

provide more reliable estimates than previous studies, notably allowing us to relax the common 

assumption of a constant marginal product of labor across sectors. Relaxing that assumption 

and recognizing the tradability of some services industries are important to our main finding. 

These results emphasize the importance of reducing trade costs for enhancing productivity. 
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1. Introduction 

A key result in development accounting is that differences in GDP per worker are largely 

accounted for by differences in (total factor) productivity (Caselli, 2005; Hsieh & Klenow, 

2010; Inklaar et al., 2019). To understand what drives these aggregate productivity differences, 

many studies analyze two-sector models of the economy, distinguishing agriculture versus non-

agriculture (e.g., Restuccia et al., 2008; Gollin et al., 2014), traded versus non-traded (Balassa, 

1964, Samuelson, 1964, Hassan, 2016), manufacturing versus non-manufacturing (Rodrik, 

2013), consumption versus investment (Hsieh and Klenow, 2007) and traditional versus non-

traditional services (Duarte and Restuccia, 2020). As argued in Herrendorf and Valentinyi 

(2012, H&V henceforth), these distinctions imply a range of non-comparable two-sector 

decompositions of the economy and argue for an encompassing set of sectoral productivity 

comparisons.  

In this paper we bring a fresh perspective to this approach, analyzing productivity across 12 

sectors that map into the two-sector distinctions from the previous paragraph. Our main 

contribution is through improved productivity measurement. We develop new estimates of 

cross-country relative prices, i.e., purchasing power parities (PPPs). In contrast to H&V, we 

measure relative prices for sectoral value added rather than final expenditure, accounting for 

differences in the terms of trade1 and using direct measurement of output prices for several key 

sectors.2 We also distinguish between relative prices of sectoral (gross) output and intermediate 

inputs.3 Finally, we allow for variation in the marginal product of labor, in contrast to H&V, 

who assume that the marginal value products for all production factors are equalized across 

sectors. 

These conceptual improvements to measurement are partly enabled by advances in data 

availability. Many of the development accounting exercises and the work of H&V are based on 

the data of Penn World Table (PWT) 6.x, comparing global prices for 1996. We draw on the 

three most recent rounds of global price comparisons, for 2005, 2011 and 2017, benefiting from 

the measurement improvements in this more recent period.4 We also have data on sectoral 

 

1 Following Cavallo et al. (2023). 
2 We extend the framework of Freeman, Inklaar and Diewert (2021) to measure output prices in agriculture and 

mining. 
3 Following Inklaar and Diewert (2016). 
4 The basic data are from the International Comparison Program, ICP, for 2005 (World Bank, 2008), 2011 (World 

Bank, 2014) and 2017 (World Bank 2020). ICP 2005 are adjusted for biases based on Inklaar and Rao (2017). 
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employment (as well as value added) from the Economic Transformation Database (Kruse et 

al., 2023) which, combined with OECD STAN and Eurostat, provide comprehensive coverage. 

Combined with data on country-wide produced and human capital and factor shares of PWT 

version 10.01 (Feenstra et al., 2015), we develop greatly improved estimates of sectoral 

productivity. Our sample covers 84 countries across the global income distribution for the years 

2005, 2011 and 2017. We follow H&V and analyze the correlation between sectoral 

productivity differences and GDP per worker. 

Our main novel result is that the distinction between the traded and non-traded sector is most 

important for understanding aggregate productivity differences across countries. We find that 

productivity in the traded sector varies with GDP per worker, while productivity in the non-

traded sector does not. To define the non-traded sector, we use export and import shares for the 

countries in our data as well as estimates of tradability by Jensen and Kletzer (2005). Their 

indicator is based on the mismatch (across the United States) of local demand and local supply, 

with a larger mismatch indicating greater tradability. Based on these three indicators, we argue 

that only few sectors are non-traded, notably the public sector, construction and real estate, and 

we find that productivity in this non-traded sector does not systematically vary with GDP per 

worker. Productivity in the traded sector does vary systematically, regardless of whether we 

use a narrow definition of the traded sector, that primarily covers goods-producing industries, 

or a broader one that also includes tradable services. 

Results for other two-way splits are less conclusive, a result different than reached by H&V. In 

a comparison where we sequentially change our methods to match those of H&V, we find that 

relaxing the assumption of a common marginal product of labor is the main reason why we 

reach different results. This is in line with Gollin et al. (2014), who find that labor productivity 

in agriculture is systematically lower than in the non-agricultural economy, in particular in 

lower-income countries. The result on traded versus non-traded aligns with Duarte and 

Restuccia (2020), who distinguish traditional and non-traditional services by whether the 

income elasticity is positive or negative. Though this is a different conceptual approach, their 

group of traditional services largely overlaps with our definition of the non-traded sector. 

Comparing productivity across countries in services is challenging since relative prices are 

harder to measure. However, long-run time series evidence for the United States also shows 

that productivity growth of traded services is positive, while productivity growth of non-traded 

services has been stagnant. We also examine the sensitivity of our cross-country results to the 
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assumption of a common marginal product of capital across countries for a subset of 42 

countries with sectoral capital data and find further confirmation for our finding on the traded 

versus non-traded sector and mixed or inconclusive evidence on other two-way splits. 

Studies comparing sectoral productivity across countries have long faced a difficult trade-off. 

One could implement a very data-intensive measurement approach requiring relatively few 

structural assumptions, but this would limit the set of countries considered to a few, generally 

higher-income countries, see e.g., Jorgenson, Kuroda and Nishimizu (1987) and Inklaar and 

Timmer (2009) or the more recent work by Fadinger, Ghiglino and Teteryatnikova (2022), who 

cover a broader range of countries. Alternatively, one could specify a model with more structure 

and assumptions to cover a broad range of countries, see e.g., Hsieh and Klenow (2007) for an 

approach based on a growth model or Fadinger and Fleiss (2011) for one based on a trade 

model. The approach of H&V proved an important step forward, requiring fewer assumptions 

but still allowing broad country coverage. Subsequent work by (e.g.) Hassan (2016) and Duarte 

and Restuccia (2020) has also followed H&V’s approach. Our work takes this line of research 

one step further, leveraging greater data availability on sectoral prices and employment to relax 

crucial assumptions, in particular on the constancy of the marginal product of labor across 

sector. Similarly, we do not have to make assumptions on the production structure where 

expenditure prices equal valued added prices (H&V) or rely on data for a limited set of 

countries and calibration (Duarte and Restuccia, 2020), but instead we have the data on the 

input-output structure of our 84 countries to estimate value added prices. The result is an 

analysis that covers a broad enough range of countries to speak to the development accounting 

literature with minimal theoretical structure. 

Our work also relates to recent studies on productivity convergence. Development accounting 

shows the growth path that high-income countries have taken, thereby suggesting scope for 

future development of lower-income countries. Productivity convergence aims to establish how 

far along a development path different groups of countries are. Work by Rodrik (2013) 

highlights how formal manufacturing industries show strong evidence of convergence in 

contrast to the (combined) informal manufacturing and non-manufacturing sector. Herrendorf, 

Rogerson and Valentinyi (2022) recently showed that convergence is absent for the total 

manufacturing sector (i.e., formal and informal together). Viewing our results in this light, 

provides further evidence that manufacturing activities are not uniquely relevant for 

development and that traded services industries may provide a fruitful path for development as 

well.  
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Finally, this work shows the continued relevance of the Balassa-Samuelson hypothesis for 

understanding differences in international prices and productivity. With greater scope for scale 

and competition, the traded sector can realize substantial productivity growth and the prices in 

the traded sector have less scope for variation due to (international) competitive pressure. By 

extension, this also confirms the insight of Baumol (1967) that economies can be characterized 

by progressive and stagnant sectors. And as Baumol et al. (1985) conclude: “The service sector 

happens to contain some of the economy’s most progressive activities as well as its most 

stagnant.” In that, we also relate to the literature on trade costs and productivity growth. For 

example, Bernard, Jensen and Schott (2006) find that manufacturing industries experiencing 

large declines in trade costs show relatively strong productivity growth. Miroudot, Sauvage 

and Shepherd (2012) find the same effect for services industries, showing that the impact of 

trade costs on productivity growth is of similar magnitude for services as for goods-producing 

industries. Seen through this lens, the high level of productivity in goods and traded services 

in high-income countries can be explained by reductions in trade costs for both goods and 

services. This would be in line with the findings of Lee (2023) who documents that trade costs 

are lower for trade between high-income countries in goods and (producer) services than for 

lower-income countries.5 

2. Productivity measurement 

For the analysis of this paper, we compute sectoral total factor productivity (TFP) estimates for 

a broad set of developed and developing countries (see the Appendix for the list of countries 

covered) for the years 2005, 2011, and 2017. For a consistent analysis of cross-country 

productivity levels, we require input, output, and productivity estimates which are comparable 

across countries. Inklaar and Diewert (2016) put forward an index-number approach for 

productivity measurement that allows one to construct such estimates, implemented more 

recently in Freeman et al. (2021). We follow this method, hereinafter referred to as the 

Inklaar/Diewert method, which builds upon the productivity measurement technique pioneered 

by Diewert and Morrison (1986), a technique that is grounded in production theory. A brief 

explanation of this method follows. 

 

5 Lee (2023) defines as producer services what we label ‘traded services’; the composition in their paper is very 

similar to ours. 
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Suppose that a production unit 𝑖 in country j produces a vector of M net outputs, 𝑦 ≡

[𝑦1, … , 𝑦𝑀]. The production of these net outputs requires a nonnegative N-dimensional vector 

of primary inputs, 𝑥 ≡ [𝑥1, … , 𝑥𝑁]. A production unit i can produce net outputs conditional 

upon the technology set 𝑆𝑖, where 𝑖 = 1, . . 𝐼. Furthermore, each technology set 𝑆𝑖 is a closed 

convex cone, which implies that the production function of production unit 𝑖 features constant 

returns to scale. In line with Diewert and Morrison (1986), we assume the following value 

added function or GDP function for each strictly positive price vector 𝑝 ≡ [𝑝1, … , 𝑝𝑀] ≫ 0𝑀 

and each strictly positive primary input vector 𝑥 ≫ 0𝑁:  

𝑔𝑖(𝑝, 𝑥) ≡ max 
𝑦

{∑ 𝑝𝑚𝑦𝑚

𝑀

𝑚=1

: (𝑦, 𝑥) 𝜖 𝑆𝑖} ;      𝑖, =  1, . . . , 𝐼. (1) 

We define the value of net output m in country j as 𝑣𝑗𝑚 for 𝑚 =  1,… ,𝑀. Thus, there are M 

net outputs considered, and 𝑣𝑗𝑚 > 0 implies that net output m reflects a commodity that is 

produced, while 𝑣𝑗𝑚 < 0 indicates that net output m is an intermediate input. The price or 

purchasing power parity (PPP) corresponding to the net output m produced in country 𝑗 is 

𝑝𝑗𝑚 > 0, where these prices are based on the same unit of measurement for the same 

commodity between countries. PPPs measure the number of commodities that a single unit of 

a country’s currency can purchase in another country, and are used to compute the implicit 

quantity 𝑦𝑘𝑚  of net output m for country j as 𝑦𝑗𝑚 ≡ 𝑣𝑗𝑚/𝑝𝑗𝑚 for 𝑚 =  1,… ,𝑀;  𝑗 = 1,… , 𝐽.  

Having defined our net outputs, we next sum over the net outputs to estimate total value added 

𝑣𝑗 for each country j: 

𝑣𝑗 ≡ ∑ 𝑣𝑗𝑚 

𝑀

𝑚=1

; 𝑗 = 1, … , 𝐽 (2) 

Furthermore, the implicit quantity of primary input n used in production in country j is defined 

as 𝑥𝑗𝑚 ≡ 𝑉𝑗𝑛/𝑤𝑗𝑛, where 𝑉𝑗𝑛 reflects the value and 𝑤𝑗𝑛 the price or PPP of primary input n. 

The total value of primary inputs in country j is then computed as the sum of inputs: 

𝑉𝑗 ≡∑𝑉𝑗𝑛 

𝑁

𝑛=1

; 𝑗 = 1,… , 𝐽 (3) 

Moreover, define the value added output share as 𝑠𝑗𝑚 = 𝑣𝑗𝑚/𝑣𝑗. Under the assumption that the 

value added function has a translog functional form and features constant returns to scale, 
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Diewert and Morrison (1986) show that a Törnqvist–Theil output price index can be used to 

compute the aggregate PPP of value added between country 𝑗 and country 𝑘: 

𝑃𝑗/𝑘 ≡ exp [∑
1

2

𝑀

𝑚

(𝑠𝑗𝑚 + 𝑠𝑘𝑚) ln (
𝑝𝑗𝑚
𝑝𝑘𝑚

)] (4)  

Equation (4) reflects a bilateral index, where the estimated PPPs will depend on the base 

country chosen, which is not desirable. To overcome this issue, we turn it into a multilateral 

index by using the method by Caves et al. (1982) and averaging over all possible choices of 

the base country to compute base invariant PPPs 𝑃𝑗. Afterwards, we normalize the PPPs such 

that USA=1. In our current setting of sectors and countries, we then arrive at our estimates of 

real value added estimates 𝑌𝑖𝑗 by dividing nominal value added by the value added PPP deflator 

in sector i in country j: 

𝑌𝑖𝑗   ≡ [𝑣𝑖𝑗/𝑃𝑖𝑗];     𝑖 = 1, … 𝐼;  𝑗 = 1, … , 𝐽. (5) 

In a similar fashion, we can compute the aggregate quantity of our primary input 𝑋𝑗 in country 

j relative to country k using a Törnqvist-Theil input quantity index with primary input cost 

shares  𝑆𝑗𝑛 = 𝑉𝑗𝑛/𝑉𝑗:  

𝑋𝑗/𝑘 ≡ exp [∑
1

2

𝑁

𝑛

(𝑆𝑗𝑛 + 𝑆𝑘𝑛) ln (
𝑥𝑗𝑛
𝑥𝑘𝑛

)] (6)  

Here again, we use the method by Caves et al. (1982) to compute a multilateral quantity index 

𝑋𝑖𝑗 which is base country independent, and we normalize these estimates such that USA=1. 

Finally, we compute TFP in country j in sector i by dividing real value added by the aggregate 

quantity of the primary inputs: 𝐴𝑖𝑗 = 𝑌𝑖𝑗/𝑋𝑖𝑗. This provides us with a set of input, output, and 

productivity estimates which are comparable across countries and over time. 

3. Implementation and data 

Implementing the approach detailed in the previous section requires sectoral data on nominal 

values and prices (PPPs) of value added and factor inputs. This section provides a general 

description of the data required to estimate the PPPs which are used to measure real value 

added. Afterwards, we describe the data involved for calculating the factor inputs. For a more 

detailed description, please see the Appendix. 
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3.1 Estimating value added PPPs 

For the estimation of real value added, PPPs are used to deflate nominal value added, where 

data on sectoral nominal value added is retrieved from the Economic Transformation Database 

(ETD) (Kruse et al., 2023), OECD STAN, and Eurostat. For the computation of the sectoral 

PPPs, we rely primarily on the PPP benchmark data from the ICP for the years 2005, 2011, and 

2017 (the latest available benchmark). The ICP provides detailed product-level data on 

expenditures and expenditure-based PPPs which reflect purchaser prices of final goods and 

services. We map the product PPPs to the relevant sectors and aggregate the PPPs using the 

expenditure data to compute sector-level product PPPs, based on the method by Inklaar and 

Diewert (2016) described above. Importantly, we apply a double deflation procedure to 

measure real value added, where we compute separate PPPs for gross output and intermediate 

inputs, in line with the literature (Jorgenson et al. 1987; Inklaar and Timmer, 2014). That is, we 

compute sector gross output (𝑃𝑃𝑃𝑗
𝐺𝑂) and intermediate input (𝑃𝑃𝑃𝑗

𝐼𝐼) PPPs, which are then 

used to estimate value added PPPs as follows: 

ln𝑃𝑃𝑃𝑗,·
𝑉𝐴 =

1

1 − 𝛼𝑗,·
[(ln 𝑃𝑃𝑃𝑗

𝐺𝑂 − ln𝑃𝑃𝑃𝐺𝑂̅̅ ̅̅ ̅̅ ̅̅ ̅) − 휁𝑗,·(ln 𝑃𝑃𝑃𝑗
𝐼𝐼 − ln𝑃𝑃𝑃𝐼𝐼̅̅ ̅̅ ̅̅ ̅̅ )] (7) 

Where ln 𝑃𝑃𝑃̅̅ ̅̅ ̅̅ =
1

𝐽
∑ 𝑙𝑛𝐽 𝑃𝑃𝑃 ; cross-country average of ln PPP, and 휁𝑗,· =

1

2
(휁𝑗 +

1

𝐽
∑ 휁𝑗)𝐽 ; 

average of the intermediate input share 휁 in country j and of the cross-country average 

intermediate input share. To compute industry gross output PPPs, we require information on 

how much of each product the industry produces. Similarly, for the intermediate input PPP 

calculation, we need data on the intermediate inputs used within each industry. For this data, 

we rely on Supply and Use Tables (SUTs), which we retrieve from the OECD, Eurostat, the 

Asian Development Bank (ADB), Mensah and de Vries (2023), and additional country-level 

sources. With respect to the intermediate input PPPs, an important remark here is that we do 

not directly observe intermediate input prices. Instead, we assume that the basic price of a good 

is independent of its use and rely on product PPPs to estimate intermediate input PPPs.  

Importantly, with respect to the estimation of PPPs, several sectors require special attention. 

Agriculture and mining are industries that mostly produce intermediates. As mentioned above, 

the PPPs produced by the ICP reflect purchaser prices of final goods and services, thus, these 

expenditure-based PPPs are not adequate for measuring output in agriculture and mining. 

Instead, for these sectors we draw on gross output values and quantities data, which allows us 

to obtain a direct measurement of output prices for these sectors, reflecting a notable 
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improvement over using expenditure prices. For agriculture, we obtain this data from 

FAOSTAT, and for mining we rely on subsoil assets data from the World Bank (Lange et al., 

2018).  

Moreover, another important point to note is that ICP PPPs reflects purchaser prices, and thus 

these prices include domestic trade costs (trade and transport margins, taxes less subsidies) and 

import prices, and exclude export prices. However, the appropriate price for deflating industry 

output is a domestic basic price since industry output covers produced goods and services. 

Therefore, for manufacturing we estimated adjusted expenditure PPPs, by “stripping away” 

domestic trade costs, netting out the import price, and adding the export price. We do this 

adjustment based on Cavallo et al. (2023): 

𝑃𝑖𝑗
𝑌

𝑃𝑖𝑘
𝑌 = (

𝑃𝑖𝑗
𝐶 𝜏𝑖𝑗⁄

𝑃𝑖𝑘
𝐶 𝜏𝑖𝑘⁄

)

1−𝜔𝑖𝑗
𝑋

1−𝜔𝑖𝑗
𝑀

    (
�̃�𝑖𝑗
𝑀

�̃�𝑖𝑘
𝑀)

(−𝜔𝑖𝑗
𝑀∗(1−𝜔𝑖𝑗

𝑋))

1−𝜔𝑖𝑗
𝑀

(
�̃�𝑖𝑗
𝑋

�̃�𝑖𝑘
𝑋)

𝜔𝑖𝑗
𝑋

 (8)
 

where 𝑃𝑖𝑗
𝑌  reflects domestic output prices, 𝑃𝑖𝑗

𝐶 reflect consumption prices, 𝜏𝑖𝑗 reflects domestic 

trade costs (margins and net taxes), and �̃�𝑖𝑗
𝑀 and �̃�𝑖𝑗

𝑋 reflects quality-adjusted import prices and 

export prices. The subscript k reflects the base country (in this case the U.S.). Törnqvist weights 

𝜔𝑖𝑗
𝑀 and 𝜔𝑖𝑗

𝑋  are computed as 𝜔𝑖𝑗
𝑀 =

1

2
(휂𝑖𝑗
𝑀 +

1

𝐽
∑ 휂𝑖𝑗

𝑀)𝐽 ; 𝜔𝑖𝑗
𝑋 =

1

2
(휂𝑖𝑗

𝑋 +
1

𝐽
∑ 휂𝑖𝑗

𝑋)𝐽 , where 휂𝑖𝑗
𝑀 

and  휂𝑖𝑗
𝑋  reflect import and export shares (relative to total use), respectively. Taking these 

variables to the data, 𝑃𝑖𝑗
𝐶 reflects the expenditure PPP from the ICP, data on domestic trade costs 

and import and export shares stem from the SUTs, and the export and import prices reflect 

quality-adjusted export and import price data from Feenstra and Romalis (2014).  

With respect to trade, wholesale and retail trade are margin industries, i.e., firms earn their 

income by charging a margin on the products they sell to their customers. The challenge in 

comparing output prices for margin industries is that we do not observe the margin price. To 

overcome this data constraint, we follow the conceptual approach of Timmer and Ypma (2006) 

and estimate margin PPPs for the trade sector (see the Appendix for a more elaborate discussion 

on this). Finally, in line with Inklaar and Timmer (2014), for the computation of the Business 

sector PPP, an overall consumption price is used, in line with the approach by the ICP for 

estimating the PPP for financial intermediation services indirectly measured (FISIM). Table 1 

below provides a brief overview of the method and data used for the PPP calculation for 

different sectors. 



10 

 

Table 1. Summary sources and methods for sectoral PPP calculation 

Sector Method Data 

Agriculture Output PPPs Crops and livestock farm-gate price data 

from FAOSTAT 

Mining Output PPPs Natural resources data from World Bank 

Manufacturing Adjusted expenditure PPPs: 

“stripping away” domestic 

trade costs and adjusting for 

Terms-of-trade (SUTs) 

Expenditure PPPs from International 

Comparison Program (ICP), margins, 

tax, and trade data from Supply and Use 

Tables (SUTs) 

Trade Margin PPPs Expenditure PPPs from ICP, margins 

data from SUTs 

Business Expenditure PPPs, based on 

overall consumption PPP 

Expenditure PPPs from ICP 

Other sectors Expenditure PPPs Expenditure PPPs from ICP 

3.2 Estimating factor inputs 

For the calculation of TFP, we rely on the following production function with constant returns 

to scale: 

𝑦𝑖𝑗 = 𝐴𝑖𝑗(𝑘𝑖𝑗)
𝜃𝑖𝑗
(𝑙𝑖𝑗)

𝜑𝑖𝑗
(ℎ𝑖𝑗)

𝛼𝑖𝑗
 (9) 

Where 𝑦𝑖𝑗 reflects sectoral output, 𝐴𝑖𝑗 reflects sectoral TFP and 휃𝑖𝑗, 𝜑𝑖𝑗, and 𝛼𝑖𝑗 (𝛼𝑖𝑗 = 1 −

 휃𝑖𝑗 −  𝜑𝑖𝑗)  reflect the sectoral factor shares of physical capital, land, and labor, respectively, 

for sector 𝑖 in country 𝑗.  The variables 𝑦𝑖𝑗, 𝑘𝑖𝑗 , 𝑙𝑖𝑗 , and ℎ𝑖𝑗 reflect sectoral output of physical 

capital, land, and labor, and are included in per-worker terms. Moreover, labor reflects total 

hours worked multiplied by a human capital index which is based on average years of schooling 

and an (assumed) rate of return to schooling. Unfortunately, sector-level data on production 

factors is notoriously scarce for developing countries. H&V circumvent this lack of data by 

making three assumptions: competitive markets, mobile production factors, and Cobb-Douglas 

production functions where factor shares are uniform across countries. From these 

assumptions, it follows that marginal products are equalized across sectors, and that implies 

that a sector’s share of factor input equals that sector’s share of factor income. 

But in contrast to H&V, we do have information on sectoral employment data from the ETD 

(Kruse et al., 2023), supplemented with sectoral employment data from OECD STAN and 

Eurostat. This allows us to relax the assumption that the marginal product of labor is equalized 
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across sectors. Given the evidence by Gollin et al. (2014) on the large productivity gap between 

agriculture and non-agriculture, it is important to account for this friction in labor instead of 

assuming that labor is mobile across sectors, see also the discussion below. 

In another relaxation of H&V assumptions, we estimate country/sector specific factor cost 

shares rather than follow their approach of assuming factor cost shares in all countries to be 

equal to those in the US. We sketch the procedure here, providing further details in the 

Appendix. While we do not directly observe factor payments at the country/sector level, PWT 

(Feenstra et al., 2015) provides country-level data on the labor share in GDP. The remainder of 

GDP is assumed to flow to owners of capital and land. There is no comprehensive cross-country 

data on this capital/land division, but this is available for the US and for 20 of the Asian 

countries in our sample from the Asia Productivity Organization. For this set of countries, we 

find that the capital/land division can be predicted from each country’s capital and land 

intensity. We can thus compute the total income flowing to labor, capital and land and for each 

sector, (nominal) value added is income flowing to that sector. To estimate country/sector-

specific income flows, we first take US factor shares as a starting point but then iteratively 

adjust sector income to sum to factor-level totals and to sector-level totals, a procedure also 

known as the RAS method. This RAS method quickly converges to a set of sectoral income 

flows that are consistent with both sets of totals. Since we initialize this method using US factor 

shares, we implicitly assume that a sector that is (e.g.) relatively capital-intensive in the US, 

will also be relatively capital-intensive in other countries. But as we show in our results, this 

still leads to notable variation in sectoral cost shares and, for some sectors, markedly different 

productivity results. 

Bringing these pieces together, we estimate factor input per worker according to the following 

three equations: 

𝑘𝑖𝑗 =

(
휃𝑖𝑗𝑣𝑖𝑗
∑ 휃𝑖𝑗𝑣𝑖𝑗𝑖

)𝐶𝐾𝑗

𝐸𝑀𝑃𝑖𝑗
 (10)

 

   

ℎ𝑖𝑗 = ℎ𝑗 = 𝐻𝐶𝑗 ∗ 𝑎𝑣ℎ𝑗 (11)  

𝑙𝑖𝑗 =

{
 
 

 
 𝑖 = Agriculture

𝐴𝐿𝑗
𝐸𝑀𝑃𝑖𝑗

𝑖 =  Other

(
𝜑𝑖𝑗𝑣𝑖𝑗

∑ 𝜑𝑖𝑗𝑣𝑖𝑗𝑖≠𝑎𝑔𝑟
)𝑂𝐿𝑗

𝐸𝑀𝑃𝑖𝑗

 (12) 
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Equation (10) divides across sectors the economy-wide capital stock, measured as variable 𝐶𝐾𝑗 

from PWT,6 using each sector’s share in capital income. That share is derived from 𝑣𝑖𝑗, 

(nominal) sectoral value added and 휃𝑖𝑗 the capital income shares in sector 𝑖 of country 𝑗. 

Equation (11) makes a simpler assumption, namely that labor input per worker is equal across 

sectors. We measure labor input per worker using variables from PWT, namely 𝐻𝐶𝑗, which is 

the average years of schooling adjusted with the average rate of return to schooling for each 

level of education,7 and 𝑎𝑣ℎ𝑗, average hours worked per person. For land, finally, we make a 

distinction between arable land (AL) and other land (OL), both available from FAOSTAT. 

Arable land, as in H&V, is assumed to be only used in agriculture. Other land, which is the total 

land area minus land for agricultural purposes, forests and inland and coastal areas, is allocated 

to the other sectors based on each sector’s share in land income. Here 𝜑𝑖𝑗 is the land income 

share in sector 𝑖 of country 𝑗. 

4. Results 

We compile all necessary data for a sample of 84 countries and the years 2005, 2011 and 2017.8 

To be included in the sample, we require data on at least sectoral employment and a recent 

input-output or supply-use table. The other data requirements, notably on relative output prices 

and factor inputs, are less restrictive. Taking the 183 countries in PWT as the global numbers, 

our data covers 88 percent of the world population. The median GDP per worker level in our 

sample is higher than that for the world ($44 000 versus $33 000) and the 90/10 ratio for the 

84 countries is 15 versus a global ratio of 19. Though our sample is richer and less unequal 

than the full set of countries, the role of (aggregate) productivity differences in accounting for 

variation in GDP per worker is very similar, suggesting our country coverage is representative.9 

In discussing our results, we first illustrate the relevance of the measurement improvements we 

make, regarding relative prices, estimating sectoral factor cost shares and relaxing assumptions 

on the marginal product of labor. We then present our main results on the systematic variation 

in productivity across sectors and sector groupings. Finally, we discuss the sensitivity of our 

 

6 For some countries, PWT has no data on CK (relative capital services), so instead we use 𝐶𝑁 (relative capital 

stock) for the comparison. 
7 As in Caselli (2005) and H&V, we assume the first four years of schooling have a return of 13.4 percent, the next 

four of 10.1 percent and any subsequent years of 6.8 percent. 
8 The list of countries covered is in Appendix Table A.1 
9 Using PWT and regressing log TFP on log GDP per worker for our sample of 84 countries and 3 years gives a 

coefficient of 0.349, which is not significantly different from the 0.359 for the full set of countries in PWT. 
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results to concerns about international price comparisons in services and to sectoral variation 

in the marginal product of capital. 

Measurement improvements 

The measurement methods we apply represent some clear advances compared to earlier 

approaches. First, we make no assumptions on the law of price holding, as in, for example, 

Rodrik (2013) and we impose notably less structure than the approach of H&V or Duarte and 

Restuccia (2020). While H&V impose a common marginal product of labor across sectors, we 

use sectoral employment data. And rather than assuming equal factor cost shares to those in the 

United States, we use variation in country-level labor cost shares, endowments of capital and 

land and sectoral composition to estimate country/sector specific cost shares. 

Figure 1. Value added prices across sectors 

 

Notes: Figure shows boxplots for each sector’s value added price level across the 84 countries, with the solid box 

indicating the range from 25th to 75th percentile and the solid line indicating the median value. 

We illustrate the importance of relaxing these assumptions in the following figures and table. 

Figure 1 shows a boxplot of the estimated sector relative prices (value added PPP divided by 

the market exchange rate) for the 12 sectors of our analysis and the total economy, averaged 

across the three years. As the figure shows, relative prices differ noticeably across sectors, with 

the median for agriculture, manufacturing and mining closest to the law of one price but 
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Relative price (PPP/XR)
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showing notable variation around that median. There is also notable variation across the other 

sectors. For example, the median price level in the transport sector is at 0.66, close to the 

median for the total economy of 0.71, but for construction the median is only 0.22. This 

illustrates how careful price measurement at the sectoral level is crucial for the type of 

productivity comparison of this paper. 

In Table 2 we show summary statistics for the sectoral factor shares that we estimate using the 

RAS method described above. For some sectors, the cross-country variation in factor shares is 

only limited; for example, in business services, the country at the 25th percentile for labor share 

is at 0.615 and the 75th percentile is at 0.705. These, in turn, do not differ strongly from the US 

labor share for business services of 0.718. But, as a counter example, the land share in 

agriculture varies substantially across countries, with an interquartile range from 0.247 to 0.638 

(the US share is 0.370). As we show below, the impact of using our estimated country/sector 

factor share varies between settings but can be substantial where the cross-country variation in 

sector shares is large. 

Table 2. Sectoral factor shares summary statistics. 
 Labor  Capital  Land  

Sector Median 25th 75th Median 25th 75th Median 25th 75th 

Agriculture 0.214 0.152 0.300 0.293 0.176 0.433 0.466 0.291 0.670 

Mining 0.204 0.175 0.239 0.736 0.651 0.796 0.045 0.022 0.106 

Manufacturing 0.439 0.393 0.490 0.506 0.422 0.575 0.038 0.018 0.085 

Utilities 0.292 0.247 0.336 0.681 0.606 0.740 0.020 0.010 0.048 

Construction 0.775 0.725 0.813 0.134 0.099 0.170 0.075 0.033 0.140 

Trade 0.616 0.561 0.655 0.292 0.226 0.355 0.070 0.034 0.144 

Transport 0.635 0.591 0.678 0.321 0.259 0.383 0.031 0.015 0.067 

Business 0.664 0.617 0.709 0.314 0.258 0.371 0.016 0.008 0.036 

Finance 0.534 0.487 0.583 0.414 0.340 0.484 0.036 0.018 0.078 

Real estate 0.162 0.136 0.186 0.695 0.575 0.779 0.118 0.061 0.254 

Government 0.724 0.684 0.757 0.236 0.188 0.287 0.030 0.014 0.062 

Other services 0.751 0.711 0.782 0.196 0.153 0.243 0.039 0.017 0.077 

Notes: Table shows the factor shares for the median country, and at the 25th and 75th percentile. Factor shares are 

estimated using a RAS-method on country-level factor income and sector-level value added, see main text for 

details. 
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Figure 2. Relative marginal product of labor across sectors 

 

Notes: The marginal product of labor (MPL) in each country and sector is computed as the labor share times labor 

productivity. The relative MPL is the sector’s MPL divided by the economywide MPL. The figure shows the 

median relative MPL across countries for each sector. Real estate is omitted because a substantial part of this 

industry consists of income from owner-occupied housing. 

 

To estimate sectoral factor inputs, H&V assume for all factors that a sector’s share of economy-

wide factor inputs equals that sector’s share of economy-wide factor costs, i.e., that the factor 

price is equal across sectors. Thanks to the growing availability of sectoral employment data, 

notably from the Economic Transformation Database (Kruse et al., 2023), we can relax this 

assumption for labor, as detailed above. That also allows us to illustrate to what extent the H&V 

assumption is violated in practice. To do so, we compute each sector’s marginal product of 

labor (MPL) as 𝑀𝑃𝐿𝑖𝑗 = 𝛼𝑖𝑗 × 𝑦𝑖𝑗 and compare this with the country-level MPL, 𝑅𝑀𝑃𝐿𝑖𝑗 =

𝑀𝑃𝐿𝑖𝑗 𝑀𝑃𝐿𝑗⁄ . Figure 2 plots the median RMPL for each sector with larger deviations from one 

indicating larger deviations from the H&V assumption. Such deviations are particularly marked 

for agriculture with a median RMPL of 0.20. This RMPL below one is in line with the findings 

of Gollin et al. (2014) and more generally with a development literature arguing that there is 

surplus labor in agriculture. But the variation around one is notable for most sectors, with 

finance an outlier in the other direction. These estimates of RMPL are imperfect, for instance 

because cross-sector variation in effective labor input per worker will vary across sectors and 

because of possible error in estimating sectoral labor shares. However, Gollin et al. (2014) find 
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that adjusting for differences in human capital of agricultural workers does not eliminate MPL 

differences, so these remaining measurement issues are unlikely to bring us back to the H&V 

assumption of a common MPL. 

Systematic price and productivity variation 

With this illustration of the importance of the key measurement advances in our analysis, we 

turn to the analysis of price and productivity differences. To succinctly summarize the patterns 

in our data, we follow H&V and use regressions of relative prices and relative productivity on 

income levels. For relative prices, this leads to the following equation: 

log(𝑝𝑖𝑗𝑡) = 𝛼𝑖 + 𝛽𝑖 log(𝑦𝑗𝑡) + 𝛿𝑡 + 휀𝑖𝑗𝑡 (13) 

where 𝑝𝑖𝑗𝑡 is the value added price level in sector 𝑖 in country j, 𝑦𝑗𝑡 is GDP per worker in 

country 𝑗 in the three years of our sample (𝑡 = 2005, 2011, 2017) and 𝛿𝑡 are year fixed effects. 

A parallel equation is used for analyzing productivity differences:  

log(𝐴𝑖𝑗𝑡) = 𝛼𝑖 + 𝛾𝑖 log(𝑦𝑗𝑡) + 𝛿𝑡 + 휀𝑖𝑗 (14) 

where 𝐴𝑖𝑗𝑡 is TFP in sector 𝑖 in country 𝑗 at time 𝑡. The coefficients 𝛽𝑖 and 𝛾𝑖  can be interpreted 

as the degree to which prices and productivity vary with income. If, for example, 𝛾𝑖  is equal to 

zero, then there are no systematic TFP differences across countries. If this coefficient equals 

one, this means that systematic TFP differences are equal to per capita GDP differences.  

We estimate 𝛽𝑖 and 𝛾𝑖 , first, for individual sectors but subsequently also common for groups of 

sectors 𝛽𝑖s and 𝛾𝑖s for groups of sectors, such as the non-agricultural sector or the traded sector. 

In those case, we estimate equations (13) and (14) using as weights the share of each sector in 

total value added. This ensures that the level of sectoral disaggregation of our data does not 

affect these more aggregate results. 

Table 3 shows that there is substantial variation across sectors in the price-income relationship. 

As noted above, for the total economy coefficients we use price and productivity data for each 

sector and use value added weights in the regression. Price levels, on average, increase with 

income, with construction and non-market services prices rising relatively faster, and 

agriculture and industry prices relatively slower. Productivity tends to vary less systematically 

with income than prices, indicating that part of the reason why prices in rich countries are 

higher is that factor costs are higher. 
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We now turn to the question how to most parsimoniously account for the variation in 𝛽𝑖 and 𝛾𝑖  

across sectors. Like H&V, we use different two-way splits: traded versus non-traded, 

agriculture versus non-agriculture, manufacturing vs. non-manufacturing and investment 

versus consumption. Traded versus non-traded warrants particular discussion. H&V follow a 

typical approach by classifying manufactured products as traded and services and construction 

as non-traded. Yet in their distinction between traditional and non-traditional services, Duarte 

and Restuccia (2020) also discuss that there is increasing scope for trade in what they label 

‘non-traditional services’. 

Table 3. Variation in prices and productivity with GDP/worker by sector. 

Sector Price Level 

𝛽𝑖 

Productivity level 

𝛾𝑖  

Total economy 0.277 0.326 

 (0.022) (0.019) 

Agriculture 0.057 0.632 

 (0.028) (0.033) 

Mining -0.104 0.498 

 (0.019) (0.033) 

Manufacturing 0.328 0.300 

 (0.025) (0.031) 

Utilities 0.490 -0.110 

 (0.053) (0.052) 

Construction 0.649 0.187 

 (0.057) (0.052) 

Trade 0.298 0.515 

 (0.032) (0.031) 

Transport 0.574 0.111 

 (0.041) (0.045) 

Business 0.360 0.147 

 (0.018) (0.029) 

Finance 0.179 0.326 

 (0.020) (0.037) 

Real estate 0.649 -0.183 

 (0.039) (0.041) 

Government 0.591 0.126 

 (0.041) (0.031) 

Other services 0.644 0.347 

 (0.025) (0.044) 
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Note: Column 2 shows estimates of 𝛽𝑖  based on equation (13), column 3 shows estimates of 𝛾𝑖 based on equation 

(14). The coefficient for Total economy in both columns reflects the coefficient from the regression for all sectors 

jointly, with value added shares used as weights. Robust standard errors are reported in parentheses. 

 

To examine this more closely, we turn to three indicators of tradability, a sector’s export share 

and import share and an estimate of the fraction traded based on locational Ginis, based on the 

work of Jensen and Kletzer (2005) and Jensen and Gervais (2019). Table 4 shows export and 

import shares, computed based on the Supply-Use tables we have available and averaged across 

countries.10 The export share is defined as a sector’s exports as a share of its gross output, the 

import share is defined as imports over total use of the product.11 The third indicator is not 

based on observed trade flows but on the geographical concentration of production and 

consumption. The disparity between local supply and local demand is an indicator of the extent 

of trade in an industry. We use the resulting estimates of the traded share of each sector’s 

employment from Jensen and Kletzer (2005, Table 4) based on data for the United States. 

Table 4. Sector tradability according to export and import shares and geographical 

concentration. 

Sector 

Export 

share 

Import 

share 

Share traded from 

geographical Ginis Classification 

Agriculture 0.28 0.16 1.00 Broad/Narrow 

Mining 0.78 0.48 1.00 Broad/Narrow 

Manufacturing 0.62 0.28 0.86 Broad/Narrow 

Utilities 0.08 0.06 0.19 Non 

Construction 0.02 0.01 0.00 Non 

Trade 0.13 0.07 0.23 Broad 

Transport 0.22 0.15 0.70 Broad/Narrow 

Business 0.17 0.12 0.69 Broad 

Real estate 0.00 0.00 0.91 Non 

Finance 0.11 0.08 0.68 Broad 

Government services 0.01 0.01 0.08 Non 

Other services 0.04 0.05 0.23 Non 

Notes: The export share is the ratio of sectoral exports over gross output, the import share is the ratio of sectoral 

imports over total use. Both are calculated from the Supply-Use tables for each country, and we report here the 

cross-country average shares. The ‘shared traded from geographical Ginis’ is computed from Jensen and Kletzer 

(2005, Table 4). 

 

10 All countries are pooled in computing this average, but the ranking is not sensitive to whether the average is 

computed only for high-income or low-income countries.  
11 This definition is in line with the international trade literature, e.g., Arkolakis, Costinot and Rodriguez-Claire 

(2012). 
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Table 4 shows that there is considerable variation in tradability across sectors and differences 

across the three indicators. The three goods-producing sectors, agriculture, mining and 

manufacturing, have the highest export and import shares but the transport sector is quite close 

to the export and import shares in agriculture. Especially when also considering the third 

indicator based on geographical concentration of production and consumption, some of the 

services industries appear as more tradable. Especially finance and business services score high 

on this third indicator, at comparable levels to the transport sector. The tradability of the 

(wholesale and retail) trade sector is lower, but going by the export and import shares, it is 

comparable to finance. One outlier is real estate, which has zero export and import shares but 

is geographically concentrated. This is, in part, because real estate firms (i.e., those that rent 

residential and/or commercial property) represent only a modest portion of the overall industry, 

which also includes imputed rents from owner-occupied housing. 

The final column of Table 4 gives our classification into traded and non-traded. To recognize 

the fact that this is less of a binary classification than, say, agriculture vs. non-agriculture, we 

use a narrow definition, which only includes agriculture, mining, manufacturing and transport, 

and a broad definition that also includes trade, finance and business services. Utilities, 

construction, real estate, government and other services are classified as non-traded. 

Table 5 shows the results of estimating equations (13) and (14) for the different classifications, 

again using value added weights. Based on these results, manufacturing is not distinct from 

non-manufacturing, for both prices and productivity the 𝛽𝑖 and 𝛾𝑖  coefficients do not differ 

significantly. Output prices in the investment sector actually vary more than in the consumption 

sector and for productivity the variation is significantly less, in contrast to H&V and Hsieh and 

Klenow (2007). Productivity varies more in agriculture than in non-agriculture and this 

difference is large and significant. This is consistent with the evidence from Gollin et al. (2014) 

on productivity differences, mirrored in Figure 2’s results on the marginal product of labor.  

The top part of Table 5 provides our main novel result, namely that the systematic variation in 

prices is significantly lower and the variation in productivity is significantly higher in traded 

sectors than non-traded sectors. Indeed, productivity in the non-traded sector does not 

systematically vary with income level. This result is not affected by whether we use the narrow 

or the broad definition of tradability. This is not to argue that only tradability matters for 

understanding sectoral variability in prices and productivity. For example, productivity 

variability in agriculture is significantly larger (and price variability significantly smaller) than 
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in other traded sectors, suggesting that the specific features of that sector—such as resource 

misallocation—are additionally important. More generally, and as shown in Table 3, there is 

variation within the traded and non-traded sector. 

Table 5. Sector relative prices, productivity, and income levels; from sectors to alternative 

two-sector splits. 

Group Price Level 

𝛽𝑖 

Productivity level 

𝛾𝑖  

Broad traded 0.174 0.399 

 [0.137 – 0.210] [0.366 – 0.431] 

Narrow traded 0.135 0.369 

 [0.090 – 0.181] [0.324 – 0.414] 

Non-traded 0.658 0.024 

 [0.616 – 0.701] [-0.024 – 0.071] 

Agriculture 0.010 0.567 

 [-0.044 – 0.064] [0.501 – 0.634] 

Non-agriculture 0.418 0.247 

 [0.385 – 0.451] [0.209 – 0.284] 

Manufacturing 0.297 0.356 

 [0.250 – 0.343] [0.293 – 0.419] 

Non-manufacturing 0.266 0.332 

 [0.216 – 0.316] [0.291 – 0.374] 

Consumption 0.232 0.353 

 [0.184 – 0.280] [0.312 – 0.394] 

Investment 0.459 0.232 

 [0.381 – 0.537] [0.149 – 0.315] 

Notes: Column 2 shows estimates of 𝛽𝑖  based on equation (13), column 3 shows estimates of 𝛾𝑖 based on equation 

(14). Sectoral value added shares are used as weights. We show the coefficient from these equations and the 95-

percent confidence interval in square brackets, based on robust standard errors. See Table 4 for the 

broad/narrow/non-traded classification. Investment sectors are defined here as manufacturing and construction.  

 

Still, the result for traded versus non-traded sectors is powerful for a few reasons. First, it allows 

us to trace all systematic variation in productivity to a specific group of sectors. Second, it 

sheds a different light on the results of Duarte and Restuccia (2020). Their grouping of services 

into ‘traditional’ and ‘non-traditional’ was based on the income elasticity of demand while our 

grouping into traded and non-traded services is based on the tradability indicators of Table 4. 

Yet the grouping is very similar and they, too, find much greater systematic variation of 

productivity in non-traditional (i.e., traded) services than in traditional (i.e., non-traded) 

services. 
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The impact of measurement improvements 

Compared to H&V we have introduced a series of measurement improvements which may be 

important in understanding why our results differ from those of H&V. In our results the 

traded/non-traded distinction is considerably more salient, and we find larger productivity 

variation in the consumption sector than in the investment sector instead of smaller variation. 

To understand the relevance of different measurement changes, we calculate several alternative 

sets of sectoral TFP, to move closer to the data and methods of H&V. The first set approximates 

H&V the most and then we cumulatively improve measurement until the fourth set is based on 

our preferred method: 

1. Using ICP expenditure PPPs for all sectors, assuming the same MPL for all sectors, 

assuming factor shares equal those in the US. 

2. Using value added PPPs for all sectors, assuming the same MPL for all sectors, 

assuming factor shares equal those in the US. 

3. Using value added PPPs for all sectors, using sectoral employment data, assuming 

factor shares equal those in the US. 

4. Using value added PPPs for all sectors, using sectoral employment data, estimating 

country-sector specific factor shares. 

The first set of TFP estimates is conceptually closest to H&V, but still differs from their 

estimates along several dimensions: (i) the 86 countries that H&V cover are not the same as 

the 84 covered here, (ii) their analysis is on data for 1996, ours is for 2005, 2011 and 2017, (iii) 

in their approach, sectors are distinguished by type of expenditure, not by type of production 

activity and as consequence, sectors that predominantly produce intermediate products, such 

as agriculture or mining, are not identified separately in H&V and (iv) our measurement 

approach does not allow us to reliably distinguish TFP of detailed manufacturing industries. 

This means that H&V’s “Food” sector does include the food processing industry, while ours 

only covers agriculture and H&V’s “Investment” sector separately distinguishes investment 

sectors within manufacturing while ours includes manufacturing as a whole.12 

 

12 There are some further, smaller differences. We rely on PWT for estimates of produced and human capital by 

country while H&V compile their own measures. Our aggregation of sectoral output across products and industries 

uses a Törnqvist-Theil-type index, see equation (4), while H&V sum implied quantities. These differences do not 

have a material impact on the results. 
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Table 6 compares estimates of 𝛾𝑖  by H&V and based on our data. Panel A approximates the 

five sectors of H&V based on our 12 sectors; panel B approximates their two-way splits. The 

first line in panel A is for the total across sectors, with the first column showing the H&V’s 𝛾𝑖  

at 0.46 and the final column showing the 0.32 from Table 3. Reading across the columns, we 

see that the first two sets of TFP estimates show a very similar figure of 0.48 but when allowing 

for variation in the MPL across sectors in TFP set 3—enabled by the availability of sectoral 

employment data—the coefficient decreases considerably. A similar pattern of changes can be 

observed across the individual sectors as well, with notable decreases in the 𝛾𝑖  between set 2 

and 3.  

The comparison for the construction industry clarifies why H&V—and Hsieh and Klenow 

(2007) before them—find a larger 𝛾𝑖  in investment industries compared to consumption 

industries while we find the reverse. Based on their methods, we reach a very similar 

conclusion as H&V but allowing for sectoral differences in MPL considerably reduces the 

systematic variation in TFP in the construction industry. 

Table 6. Comparison to Herrendorf and Valentinyi (2012) with alternative TFP estimates 

 H&V This paper: 

1. Exp PPPs 

 

2. Same MPL 

 

3. Same shares 

 

4. Final 

A. H&V sectors      

Total 0.46 0.49 0.49 0.32 0.33 

Food 0.68 0.37 0.54 0.52 0.57 

Mfd. consumption 0.48 0.55 0.51 0.41 0.39 

Equipment 0.84 0.60 0.47 0.38 0.36 

Services 0.22 0.56 0.48 0.19 0.21 

Construction 0.77 0.70 0.43 0.06 0.10 

B. H&V two-way splits     

Traded 0.65 0.32 0.43 0.41 0.40 

Non-Traded 0.30 0.57 0.46 0.17 0.19 

Food 0.68 0.37 0.54 0.52 0.57 

Non-Food 0.40 0.57 0.48 0.23 0.25 

Consumption 0.46 0.46 0.50 0.34 0.35 

Investment 0.81 0.62 0.42 0.23 0.23 

Notes: The table shows estimates of 𝛾𝑖 based on equation (14). Column H&V is based on Table 3 of Herrendorf 

and Valentinyi (2012). Subsequent columns use progressively more sophisticated estimates of sectoral TFP, see 
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main text for details. The sectors and two-way splits approximate H&V classification with our 12 sectors, Food 

refers to Agriculture, Manufactured consumption is total Manufacturing and Mining, Services include Utilities, 

Trade, Transport, Finance, Real estate, Business, Government and Other services. Equipment is also total 

Manufacturing. Traded refers to Agriculture, Mining, and Manufacturing, and Non-Traded the rest of the sectors. 

Investment refers to Manufacturing and Construction, and Consumption refers to the rest of the sectors. The table 

reports 2 decimal places to be consistent with Herrendorf & Valentinyi (2012). 

For Food and Services, the comparison is less clear, the 𝛾𝑖  of H&V is most similar to our 

preferred TFP measure rather than the measure that is methodologically most similar. This is 

most likely because of differences between the PPPs for 1996 used by H&V and ours for 2005, 

2011 and 2017. 

The comparison for manufactured consumption and equipment is complicated by the fact that 

our sectoral employment data do not allow us to distinguish these two parts of manufacturing. 

However, the 𝛾𝑖  in TFP set 1 for total manufacturing of 0.60 is close to the average of 

manufactured consumption and equipment of 0.66. For manufacturing, the use of double-

deflated value added PPPs has a substantial impact as does allowing for differences in sectoral 

MPL. 

Price measurement in services 

Measuring relative prices across countries is not straightforward (Deaton and Heston, 2010) 

and doing so in the context of sectors is even more challenging since the price surveys of the 

ICP capture prices of final expenditure rather than sectoral output. Given the importance of 

prices of services sectors for our results—i.e., the distinction between tradable and non-tradable 

services—it is helpful to discuss their reliability. 

As emphasized by Deaton and Heston (2010), several categories of products/sectors are 

particularly challenging to conceptualize—what they term as ‘comparison resistant’— and 

these are primarily in the non-traded sector: government, health, education, construction and 

real estate. In those sectors it is challenging to conceptualize output and/or adequately account 

for differences in their quality. At the same time, substantial effort has been made to improve 

on this situation, see, e.g., World Bank (2014, 2020).  

Yet we can also find confirmatory evidence in time series data. Our finding that high-income 

countries have (systematically) higher productivity levels in traded sectors but not in non-

traded sectors has as a corollary that in high-income countries, productivity growth in traded 

sectors will be faster over the long run than in non-traded sectors. This is Baumol’s cost disease 

as the counterpart to the Balassa-Samuelson effect. And while productivity measurement over 

time is also not straightforward, there is a more substantial body of data to draw upon.  
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To provide a long-run perspective for a high-income country, we use the BEA-BLS production 

account data, which, combined with historical data, provide a time series from 1963 to 2020. 

We use the categorization of traded versus non-traded sectors from Table 4 and distinguish 

goods-producing traded sectors from traded services. 

Table 7 shows that TFP growth has been fastest in goods-producing traded industries, at 1.6 

percent on average per year. But traded services have also shown consistently positive growth 

at 0.6 percent per year. The difference in productivity growth between traded goods-producing 

and traded services is substantial, but the very rapid TFP growth in computers and electronic 

products (at 10.5 percent on average per year) magnifies this difference. Average annual TFP 

growth in goods-producing industries excluding computers and electronic products was 0.7 

percent. In contrast, productivity in the non-traded sector of the US has stagnated over this 57-

year period. And that is not just traceable to government, see (e.g.) Goolsbee and Syverson 

(2023) on the decades-long decline of productivity in the construction sector. This is not to 

argue that there is no productivity growth in the non-traded sector at all, but rather that traded 

services show a notably different productivity growth pattern than the non-traded sector.13 

Table 7. Average annual TFP growth in the United States 

 1963-2020 (%) 

Traded goods-producing 1.6 

Of which:  

Computers and electronic products 10.5 

Other goods-producing 0.7 

Traded services 0.6 

Non-traded –0.1 

Notes: Sectoral TFP growth and value added from the BEA-BLS Production Account, combined with the 

Historical Data. We compute a Törnqvist aggregate across sectors using the classification of (broad) traded and 

non-traded from Table 4 and distinguishing between traded goods-producing and traded services. 

 

Sectoral variation in MPK 

One substantial improvement over earlier work is that we no longer have to assume constant 

MPL across sectors thanks to better data on sectoral employment. But the lack of data on 

sectoral capital input (and land use) means we still have to assume constant marginal product 

of capital (MPK) and of land. To assess the importance of this assumption, we use data from 

 

13 These results are for the US only, but Lee (2023) shows very similar results for a broader group of countries. 
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the Socio-Economic Accounts (SEA) of the World Input-Output Database (WIOD, Timmer et 

al., 2015). The SEA has data on sectoral capital stocks for 42 countries in our 84-country 

sample. Note that those 42 countries are primarily the higher-income countries of our sample, 

the average GDP per worker level (for 2005) was approximately $30 000 for the SEA sample 

and $10 000 for the 42 countries not in the SEA sample.  

To ensure comparability with the baseline productivity estimates, we use the SEA data to 

estimate the share of each sector in the total capital stock and apply that share to the total capital 

input from PWT that we use in the baseline. So, the difference between the two is that in our 

baseline we use the sectoral share of capital income to divide capital input across sectors and 

we compare that to using the sectoral share of capital stocks.14 

Table 8. TFP, constant versus varying marginal product of capital (MPK) 

Group All countries SEA sample SEA sample,  

varying MPK 

Broad traded 0.40 0.64 0.65 

Narrow traded 0.37 0.60 0.59 

Non-traded 0.02 0.03 0.00 

    

Agriculture 0.57 0.61 0.37 

Non-agriculture 0.25 0.45 0.48 

    

Manufacturing 0.36 0.67 0.82 

Non-manufacturing 0.33 0.40 0.36 

    

Consumption 0.35 0.45 0.40 

Investment 0.23 0.49 0.60 
Notes: The table shows estimates of 𝛾𝑖 based on equation (14). The column ‘All countries’ replicates the final 

column from Table 5 with estimates based on data for all 84 countries. The estimates in the ‘SEA sample’ column 

are based on a sample for the 42 countries that are also in the WIOD Socio-Economic Accounts. The column ‘SEA 

sample, varying MPK’ uses capital stock shares based on the SEA to estimate sectoral capital input. 

Table 8 shows the result of this analysis. We first contrast the results on 𝛾𝑖  from Table 5 for all 

84 countries to the same productivity measure but then for the 42 countries in the SEA sample. 

The final column of Table 8 then shows the estimates of 𝛾𝑖  based on the SEA’s capital stock 

shares instead of the capital income shares in our baseline. We first note that the SEA sample 

shows differences in patterns, with the distinction between agriculture and non-agriculture 

shrinking and the difference between manufacturing and non-manufacturing increasing.15 

 

14 The SEA data cover the period 2000–2014. To get estimates for 2017, we calculate 2014 capital/value added 

ratios from the SEA data and apply that to the 2017 value added data from our dataset. 
15 Regarding manufacturing, this implies a non-linearity with productivity only starting to rise with GDP per 

worker only above a certain level of GDP per worker. Given the result of Herrendorf, Rogerson and Valentinyi 
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There is also some indication that the investment sectors have larger variability than the 

consumption sectors, though that difference in the ‘SEA sample’ column is small. The result 

for traded versus non-traded is qualitatively similar and quantitatively even stronger. 

Comparing the last two columns shows that relaxing the common-MPK assumption has the 

biggest impact on agriculture. Instead of greater systematic variability than in non-agriculture, 

the variability is actually smaller when using SEA capital stock shares. This implies that capital 

stock shares in agriculture are lower than capital income shares in low-income countries 

compared to high-income countries. This could imply misallocation of resources, though it 

could also point to limitations of our method for estimating sectoral income shares. Either way, 

if our method overestimates agricultural capital intensity in low-income countries then we 

underestimate agricultural (total factor) productivity. For the other comparisons, relaxing the 

constant-MPK assumption makes little difference, though the systematic variability in 

investment now is notably larger than in consumption sectors. This reinforces the main novel 

result from our paper, that productivity in traded sector systematically varies with the level of 

GDP per worker while productivity in the non-traded sector does not. 

5. Conclusions 

An important contribution of this paper is in the construction of new relative price estimates 

for 12 sectors across a set of 84 countries spanning most of the world income distribution. 

These relative prices, which we provide in a new version of the GGDC Productivity Level 

Database, are based on data from the three recent rounds of the International Comparison 

Program, for 2005, 2011 and 2017, as well as a range of additional sources. Most important 

amongst those additional sources is the sectoral employment data from the Economic 

Transformation Database (Kruse, et al., 2023), which allows us to provide more reliable 

estimates of sectoral productivity and relaxing a crucial and misleading assumption of constant 

marginal products of labor across sectors. In comparison to existing studies, we find that 

relaxing this assumption matters substantially for the results. Furthermore, we use newly 

developed Input-Output Tables for these 84 countries, combined with export and import 

relative prices to estimate sectoral value added prices. 

 

(2022), this could point to informal manufacturing holding down productivity across much of the GDP/worker 

distribution until the point where the more dynamic nature of formal manufacturing (Rodrik, 2013) takes over. 
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We find new evidence on the importance of tradability for a sector’s contribution to economic 

development, emphasizing the relevance of tradable services alongside goods-producing 

industries. Using indicators of actual trade (export and import shares) and tradability based on 

the location of supply versus demand in the US, we argue that sectors such as transport, trade, 

finance and business services are also tradable to a notable degree. We find that the traded 

sector’s productivity systematically varies with income while the non-traded sector’s 

productivity does not.  

The importance of tradability for understanding cross-country productivity differences 

confirms the enduring relevance of Baumol and Balassa-Samuelson for understanding how 

countries grow rich, namely through productivity improvements in the traded sector, broadly 

viewed. This does not yet answer how tradability matters. Rodrik (2016) argued that 

manufacturing is particularly instrumental in the process of growth as a technologically 

dynamic sector, able to absorb unskilled labor and not constrained by the size of the home 

market. That still takes tradability as given and does not give insight into what factors make 

tradability so important. Is it greater exposure of firms to competition? Is it the possibility to 

achieve greater scale? And is the relationship between the level of traded costs and productivity 

growth or is productivity growth dependent on continued decreases in trade costs? The 

importance of such questions for understanding the scope for economic development suggests 

these are fruitful avenues for future research. 

Further research is also warranted to understand whether the reasons for why high-income 

countries have grown more productive in the past, are relevant for lower-income countries 

today. As discussed, development accounting is important for charting the development path 

that has already been taken, while the options for future development may be different. The 

emergence of global value chains may have changed the relevance of trade costs, continued 

automation may limit the importance of foreign sourcing and lower-income countries may face 

other constraints that are not apparent when comparing to those countries that have already 

grown rich. 
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Appendix 

Appendix Table A 1. List of the 84 countries covered in the analysis. 

Argentina Egypt Republic of Korea Philippines 

Australia Spain Lao People's DR Poland 

Austria Estonia Sri Lanka Portugal 

Belgium Ethiopia Lithuania Romania 

Bangladesh Finland Luxembourg Russian Federation 

Bulgaria France Latvia Rwanda 

Bolivia United Kingdom Morocco Senegal 

Brazil Ghana Mexico Singapore 

Botswana Greece North Macedonia Slovakia 

Canada Hong Kong Myanmar Slovenia 

Switzerland Croatia Mauritius Sweden 

Chile Hungary Malawi Thailand 

China Indonesia Malaysia Tunisia 

Cameroon India Namibia Turkey 

Colombia Ireland Nigeria Taiwan 

Costa Rica Iceland Netherlands Tanzania 

Cyprus Israel Norway Uganda 

Czech Republic Italy Nepal United States 

Germany Japan New Zealand Viet Nam 

Denmark Kenya Pakistan South Africa 

Ecuador Cambodia Peru Zambia 

Appendix Table A 2. List of the sectors covered in the analysis. 

Sector ISIC Rev. 4 code 

Agriculture A 

Mining B 

Manufacturing C 

Public Utilities D+E 

Construction F 

Trade G+I 

Transport H 

Business J+M+N 

Finance K 

Real estate L 

Government services O+P+Q 

Other services R+S+T+U 
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Construction of the PPPs 

In this section, we describe in more detail the construction of sectoral PPPs, which are used to 

compute real value added estimates which are comparable across countries. As mentioned 

above, for the construction of the sectoral PPPs, we require data on the ‘values’ (in local 

currency) of net outputs, and ‘prices’ (in local currency) corresponding to these net outputs. 

We first describe the computation of the PPPs for agriculture and mining, the two sectors from 

our sample for which we do not use the expenditure PPPs from ICP, but instead calculate output 

PPPs by utilizing data on output prices and values. Afterwards, we describe the calculation of 

the PPPs for the other sectors, where we rely on the expenditure PPPs from ICP. This provides 

us with a set of product PPPs. In turn, as described above, these product PPPs are used (together 

with information from SUTs on how much of each product an industry produces and 

consumes), to estimate industry gross output, intermediate input, and value added PPPs.  

Agriculture 

For the computation of agricultural PPPs, we collected crops and livestock farm-gate price and 

production data for the period 1991-2018 from the FAOSTAT database from the Food and 

Agriculture Organization (FAO) of the United Nations (FAO, 2019). The PPP for 1990 was 

estimated by extrapolating prices based on the change in the industry deflator in country j 

relative to the U.S. Importantly, when using the Inklaar/Diewert method to compute the PPPs, 

we assume that the value added function from Equation (1) has a translog functional form and 

features constant returns to scale, and a corollary that follows from this is that this method 

requires a complete set of prices for each commodity and country. In our sample, not every 

commodity is produced in each country, which causes that there are goods with no producer 

prices in certain countries. We refer to these commodities as the zero-production cases. 

Moreover, there are several agricultural goods that are produced but for which no price data is 

reported by FAOSTAT, which we refer to as the missing-price cases. In order to obtain a 

complete set of prices, we impute prices for both cases in the following way.  

To impute prices for commodities that are not produced, we follow Freeman et al. (2021) and 

identify a Hicksian reservation price (Hicks, 1940). The Hicksian reservation price reflects the 

price that is sufficiently high such that demand reaches zero. In this setting, we specifically 

define a producer Hicksian reservation price, which is the price where production of the 

agricultural commodity m in country k drops to zero. While computing a reservation price is 

formally possible, this entails estimating complicated econometric equations which is beyond 

the scope of this paper. Instead, we estimate this price based on a similar reasoning by Freeman 
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et al. (2021). Consider the setting where each country k faces the choice of producing or 

importing an agricultural commodity m. Producing the good m costs 𝐶𝑚
𝑘 , while importing it 

costs 𝑊𝑚. If the production costs 𝐶𝑚
𝑘  are higher than the world (import) price 𝑊𝑚, then a 

country imports rather than produces that good. In contrast, if 𝐶𝑚
𝑘  is lower than 𝑊𝑚, then that 

good is produced domestically and sold at the domestic price 𝑝𝑚
𝑘 . In the limit, the good is not 

produced if a good’s production costs equal the (world) import price, i.e., 𝐶𝑚
𝑘  = 𝑊𝑚. In this 

case, the good is instead imported and the Hicksian reservation price equals the (world) import 

price 𝑊𝑚. Correspondingly, the price for agricultural commodity m in country k is defined as 

follows: 

𝜔𝑚
𝑘 = {

        𝑝𝑚
𝑘                𝑖𝑓 𝑊𝑚 > 𝐶𝑚

𝑘  

       𝑊𝑚              𝑖𝑓 𝑊𝑚 ≤ 𝐶𝑚
𝑘  (A1) 

As production costs are not observed when a commodity is not produced, Equation (A1) is 

depicted as 𝜔𝑚
𝑘 = 𝑚𝑖𝑛(𝑝𝑚

𝑘 ,𝑊𝑚). Having defined the producer reservation price, this ensures 

that all agricultural commodities in the sample have a strictly positive price16. Thus, for the 

zero-production cases, all prices are initially based on the country’s import price. If this price 

is unavailable, the maximum global import price and cross-country average producer price in 

a year is implemented, respectively.  

For the price imputations of the missing-price cases, we first use export prices and import 

prices, respectively, to approximate the producer price when this is missing. These prices are 

retrieved from FAOSTAT as well. When these prices are also unavailable for a country in a 

certain year, we rely on price deflators from previous or subsequent years to impute the price. 

Finally, for the remaining commodities that have missing prices, we use the cross-country 

average producer price in that year to approximate the price.  

Mining 

The computation of the mining PPPs follows a similar approach to that of agriculture. Here, 

we rely on data on prices and production of 15 subsoil assets from the World Bank (Lange et 

al., 2018). These subsoil assets cover both mineral assets (e.g. gold, iron, silver) and energy 

assets (e.g. coal, gas, oil). Also here, we relied on Hicksian reservation prices for assets which 

 

16 This requires the assumption that the commodity is traded internationally and has an import price, and this 

assumption indeed holds for our sample.   
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are not produced. As the period coverage of this data only goes until 2014, we estimated PPPs 

for the years 2015-2018 using the same extrapolation method used for the agriculture PPPs. 

Manufacturing  

For the estimation of manufacturing PPPs, we first calculate expenditure PPPs for nine 

manufacturing industries, where Table A3 serves as an illustration to indicate the number of 

basic headings from the ICP 2017 round mapped to each industry. As described above, for the 

manufacturing industries we make an adjustment to the expenditure PPP. Particularly, we “peel 

off” the domestic margins and net taxes (trade costs) from the expenditure PPPs, and net-out 

the import price and add the export price to arrive at output prices. We retrieve data on domestic 

margins and net taxes from Supply and Use Tables for the countries where this is available 

(discussed below). Moreover, we use quality-adjusted export and import prices for goods, 

which have been constructed by Feenstra and Romalis (2014). Afterwards, we compute the 

aggregate manufacturing PPP by aggregating the PPPs of the manufacturing industries using 

the Inklaar/Diewert method.  

Appendix Table A3. Number of basic headings covered per manufacturing industry 

ISIC Rev. 4. Number of basic headings 

10t12 34 

13t15 6 

16t18 2 

19t22 6 

23t25 4 

26t27 5 

28 3 

29t30 6 

31t33 7 

Trade: Measurement 

Wholesale and retail trade industries are a margin industry, i.e., firms earn their income by 

charging a margin on the products they sell to their customers: 

 𝑀𝑖 = 𝑆𝑖 − 𝐶𝑖 = 𝑚𝑖𝑆𝑖 , for 𝑖 ∈ 𝑤, 𝑟;  𝑤 = 1,… ,𝑊; 𝑟 = 1…𝑅 (A2) 

Let 𝑀𝑖 be the gross margin (i.e., the gross output) of an industry i in wholesale trade (indexed 

by 𝑤) or retail trade (indexed by 𝑟), 𝑆𝑖 the sales of that industry, 𝐶𝑖 the cost of goods sold and 

𝑚𝑖 the margin-to-sales ratio, 𝑀𝑖 𝑆𝑖⁄ ; 𝑀𝑖, 𝐶𝑖 and 𝑆𝑖 are all expressed at current prices. 

The challenge in comparing output prices for margin industries is that we do not observe the 

margin price. In the United States producer price index (PPI) for wholesale and retail trade, 
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these margins are surveyed and used to construct a margin price index, but in absence of such 

data, we follow the conceptual approach of Timmer and Ypma (2006) and define the margin 

PPP for industry 𝑖 as: 

 𝑃𝑃𝑃𝑗,𝑘
𝑌𝑖 =

𝑚𝑖,𝑗

𝑚𝑖,𝑘
𝑃𝑃𝑃𝑗,𝑘

𝑆𝑖 
(A3) 

Here, 𝑃𝑃𝑃𝑗,𝑘
𝑆𝑖 is the PPP for the sales of product 𝑖 in country 𝑗 relative to country 𝑘. This sales 

PPP is multiplied by the relative margin-to-sales ratio in the two countries, 
𝑚𝑖,𝑗

𝑚𝑖,𝑘
, to arrive at the 

margin PPP for that industry. The final step is to aggregate 𝑃𝑃𝑃𝑗,𝑘
𝑌𝑖 using shares of 𝑀𝑖 in total 

output of wholesale and retail trade to arrive at the PPP for the broader industry. 

Trade, implementation: margin rates 

In our dataset, we distinguish nine goods-producing industries. As this is the most granular data 

available, we let each of these correspond to a wholesale industry and a retail industry, so 𝑊 =

𝑅 = 9.17 A challenge is that we do not observe wholesale and retail margins separately. Instead, 

for each of the 9 goods-producing industries, we observe total margins, 𝑀𝑤 +𝑀𝑟 from the 

Supply table.  

Yet using this total margin number is problematic because wholesale margin rates tend to be 

much lower than retail margin rates, which will lead to compositional bias. Assume two 

countries have exactly the same margin rates in wholesale and retail trade, 𝑚𝑤,𝑗 = 𝑚𝑤,𝑘 and 

𝑚𝑟,𝑗 = 𝑚𝑟,𝑘. Also assume that in country 𝑗, wholesale makes up a larger share of the total 

industry, so 
𝑀𝑤,𝑗

𝑀𝑤,𝑗+𝑀𝑟,𝑗
>

𝑀𝑤,𝑘

𝑀𝑤,𝑘+𝑀𝑟,𝑘
. In this stylized example, the joint margin rate for country 𝑗 

would be lower than for country 𝑘: 
𝑀𝑤,𝑗+𝑀𝑟,𝑗

𝑆𝑤,𝑗+𝑆𝑟,𝑗
<

𝑀𝑤,𝑘+𝑀𝑟,𝑘

𝑆𝑤,𝑘+𝑆𝑟,𝑘
. 

To resolve this, we estimate separate margin rates for wholesale and retail trade using a RAS 

method, which is an iterative scaling method. Under this method, the row and column totals 

are given and the individual items in the matrix are found by iteratively normalizing to the row 

totals and the column totals until the items in the matrix no longer change.18 

 

17 In the industrial classification, the distinction within wholesale and retail trade is not by the products that are 

sold but the type of store, see, e.g., Timmer and Ypma (2006). 
18 See e.g., Temurshoev and Timmer (2011). 
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For most OECD countries, we have valuation tables, which allocate wholesale and retail trade 

margins to use categories. Equating retail margins with the margins on household consumption 

and wholesale margins with the residual, we can compute wholesale and retail margins. For the 

overall wholesale and retail industry, we find that wholesale and retail margins each make up 

approximately 50 percent of the total margins. So, as a shortcut, we assume: 

 
∑𝑀𝑤

𝑤

≡ 𝑊𝑀 =
1

2
×𝑀 

∑𝑀𝑟

𝑟

≡ 𝑅𝑀 =
1

2
×𝑀 

(A4) 

Where 𝑀 is the sum of margins across all 9 good-producing industries and we define 𝑊𝑀 as 

total wholesale margins and 𝑅𝑀 as total retail margins. To initialise the RAS method, we set 

the initial margins 𝑀𝑤 and 𝑀𝑟 assuming the total margin rate applies to both, �̃�𝑤 =

𝑀𝑤+𝑀𝑟

𝑆𝑤+𝑆𝑟
× 𝑆𝑤 and �̃�𝑟 =

𝑀𝑤+𝑀𝑟

𝑆𝑤+𝑆𝑟
× 𝑆𝑟 . Since all elements of the margin data are positive, the RAS 

method quickly converges to a unique solution.19 

We verify this RAS method for 20 OECD countries, for which we have both the actual margin 

rates by use from the valuation matrices and the outcomes of the RAS method. Table A4 shows 

the results of this comparison. The average retail margin rate based on the RAS method is 

somewhat higher than the observed rate in the data, 0.36 versus 0.33, while the wholesale rate 

is a bit lower at 0.13 versus 0.14. The standard deviation across countries and products is also 

similar. The correlation between the two series is higher for the wholesale margin rate, at 0.84, 

than for the retail margin rate, at 0.57, but even a correlation of 0.57 is not low. 

Appendix Table A 4. Wholesale and retail margin rates: observed vs. RAS method 

  Average Standard deviation Correlation 

  Observed RAS Observed RAS Observed-RAS 

Retail (household consumption) 0.33 0.36 0.12 0.14 0.57 

Wholesale (other) 0.14 0.13 0.07 0.06 0.84 

Notes: The table shows the margin rates from the OECD SUT and valuation tables for 20 OECD countries for 

goods-producing industries for 2017 and the estimated margin rates based on the RAS method described in the 

main text. The retail margin rate is defined as the margins on household consumption expenditure divided by 

household consumption expenditure at purchasers’ prices. The wholesale margin rate is defined as all other 

margins divided by all other uses. 

 

 

19 Applying an unconstrained RAS can lead to retail margin rates in excess of 100 percent. At the detailed industry 

level, the maximum observed margin rate in OECD data is 70 percent, so we constrain the RAS procedure to not 

exceed a retail margin rate of 70 percent. In 7 out of 200 cases, the RAS retail margin rate is at this constrained 

level. 



37 

 

Appendix Table A 5. Average wholesale and retail margins by product: observed vs. RAS 

method. 

  Retail Wholesale 

  Observed RAS Observed RAS 

Agriculture 0.33 0.34 0.11 0.12 

Food, beverages & tobacco 0.29 0.30 0.13 0.11 

Textiles, wearing apparel & leather 0.43 0.44 0.18 0.17 

Wood, paper and printing 0.31 0.36 0.13 0.13 

Petroleum, chemicals, rubber & plastics 0.28 0.33 0.13 0.12 

Non-metallic mineral and metal products 0.36 0.35 0.12 0.12 

Electrical and electronic equipment 0.32 0.37 0.14 0.14 

Machinery 0.35 0.42 0.15 0.15 

Transport equipment 0.22 0.27 0.10 0.09 

Other manufacturing 0.39 0.44 0.19 0.16 

Notes: The table shows the average margin rates by product for goods-producing industries in 20 OECD countries, 

see notes to Table A4. 

 

Table A5 shows the average wholesale and retail margin rates by product and this table 

highlights the importance of the procedure we followed. The averages from the RAS method 

are close to the observed averages and the variation across products is very similar with 

correlations of 0.90 (retail) and 0.95 (wholesale). If we had used a single margin rate, the scope 

for compositional bias would have been severe. And if we had used the same margin rate across 

products, we would have missed some of the notable variation between products, with much 

higher margin rates in, for example, textiles than in transport equipment. Of course, applying 

this method that we validated for OECD countries to a much broader and more diverse set of 

countries is a big step. However, we expect that broad patterns, such as that the retail margin 

rate is larger than the wholesale margin rate, will hold in that broader set of countries, too. 

Trade, implementation: PPPs 

Given the procedure described above, we have information on 𝑀𝑖 and 𝑆𝑖 for all 9 wholesale 

industries and all 9 retail industries in every country, so for equation (3) we can compute 
𝑚𝑖,𝑗

𝑚𝑖,𝑘
 

for every 𝑖, 𝑗 and 𝑘. To compute the margin PPPs, we still need 𝑃𝑃𝑃𝑗,𝑘
𝑆𝑖, though. For that, we 

rely on ICP PPPs at the basic heading level, aggregated to the level of the 9 goods-producing 

industries distinguished here, using expenditure shares as weights. For many products, we 

cannot separately distinguish wholesale and retail PPPs, so we assume 𝑃𝑃𝑃𝑗,𝑘
𝑆𝑤 = 𝑃𝑃𝑃𝑗,𝑘

𝑆𝑟  . For 

products used as investment (i.e., part of gross fixed capital formation) we can separately 

distinguish a wholesale trade and a retail trade PPP. For example, for electrical and electronic 

equipment we include the PPP for Audio-visual, photographic and information processing 
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equipment (basic heading category 110911), which includes products for household 

consumption, in the retail trade PPP while we use the PPP for Electrical and optical equipment 

(1501112) for the wholesale trade PPP. 

This allows us to compute margin PPPs 𝑃𝑃𝑃𝑗,𝑘
𝑌𝑖 for all 9 retail and wholesale industries. Finally, 

we aggregate the margin PPPs using shares of 𝑀𝑖 in total output of wholesale and retail trade 

to arrive at the PPP for the broader retail and wholesale industry. The overall trade PPP is then 

computed as the unweighted average of the retail and wholesale trade PPP.  

Data construction 

As discussed above, we rely on the RAS method to estimate separate margin rates for wholesale 

and retail trade, which are then used to compute margin PPPs. Moreover, we assume that the 

wholesale and retail margins each make up 50 percent of the total margins. Thus, to utilize the 

RAS method we only require total margins and sales data for the different industries. This data 

is collected primarily from the OECD Supply and Use Tables database, as well as Eurostat. 

Moreover, we also rely on the Asian Development Bank (ADB) for margins data on Asian 

countries, Mensah and de Vries (2023) for data on Sub-Saharan African countries, and country-

specific sources for several LAC countries (based on data availability). Table A6 below 

provides the set of countries for which we have margins data: 

Appendix Table A 6. The 72 countries with margins data and their source. 

Source List of countries 

OECD, Eurostat 

SUTs database (42) 

AUS, AUT, BEL, BGR, BRA, CAN, CHE, CHL, COL, CRI, CZE, 

DEU, DNK, ESP, EST, FIN, FRA, GBR, GRC, HRV, HUN, IDN, 

ITA, JPN, KOR, LUX, LVA, MAR, MEX, MKD, NLD, NOR, NZL, 

POL, PRT, ROU, SGP, SVK, SVN, SWE, TUR, USA 

ADB SUTs (14) BGD, CHN, HKG, IND, KHM, LAO, LKA, MYS, MMR, NPL, 

PAK, THA, TWN, VNM 

Mensah and de Vries 

(2023) (11) 

CMR, ETH, GHA, KEN, MUS, NGA, RWA, SEN, TZA, ZAF, ZMB 

Individual country 

sources (5) 

ARG, BOL, ECU, PER, RUS 

Importantly, for several countries, we only have margins data for a single year. In these cases, 

we assume equal retail and wholesale margin rates for the other years. For the remaining 
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countries for which we could not make a margins adjustment due to a lack of SUTs data, we 

rely on the unadjusted overall goods relative price.  

Business  

In line with Inklaar and Timmer (2014), for the computation of the Business services PPP, an 

overall consumption price is used, following the practice in ICP for estimating the PPP for 

financial intermediation services indirectly measured (FISIM). Thus, the Business PPP is 

imputed based on an aggregate price, which in turn is constructed using a set of basic heading 

(unadjusted) expenditure PPPs for consumption. 

Finance  

For the computation of PPPs for the finance sector, we make a margin adjustment to one of the 

basic headings involved in computing the Finance PPP, namely the PPP for FISIM. We collect 

data on bank margin rates (measured as the difference between lending and deposit rates) from 

International Monetary Fund (IMF) International Financial Statistics (IFS) and the ECB MIR 

database. We compute margin rates relative to the US (US=1), and these rates are then 

multiplied with the basic heading for FISIM. By doing this, we essentially treat FISIM as a 

margin industry, similar to wholesale and retail trade.  This adjusted basic heading PPP is then 

used for the computation of the Finance PPP. 

Other sectors 

For the construction of the PPPs for the other sectors Public Utilities, Construction, Transport, 

Real estate, Public services, and Other services, we do not make any adjustments, so these PPPs 

reflect unadjusted expenditure PPPs. We follow the procedure of Inklaar and Timmer (2014) 

to map the expenditure basic heading PPPs from the ICP data to the relevant sectors, based on 

the name of the basic heading. Within each sector, the mapped basic headings reflect then the 

commodities that will be used to compute the sectoral PPP.  

Estimating sectoral factor inputs 

For the estimation of TFP, we require estimates of value added, as well as the factor inputs 

capital, land and labor. We use data on sector nominal value added and employment from the 

ETD (Kruse et al., 2023), OECD STAN, and Eurostat. Nominal value added is deflated by our 

estimated PPPs to obtain real value added estimates. As described in the main text, for the 

estimation of the sectoral factor inputs, we require data on sectoral factor incomes. We rely 

initially on U.S. factor shares, where we retrieve this data from the U.S. Bureau of Labor 

Statistics (BLS). In addition, we also estimate country-specific sectoral factor incomes and we 
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do this as follows. While we do not directly observe factor payments at the country/sector level, 

we do have data at the country-level on labor income, which is retrieved from PWT (Feenstra 

et al., 2015). The residual income (GDP minus labor income) that remains is assumed to be 

allocated to the factor inputs capital and land. While there is no comprehensive cross-country 

data on the income split between capital and land, for 20 of the Asian countries in our sample 

there is data available on the capital stock of produced assets and land, separately, from the 

Asia Productivity Organization. We take this data, and using the real rate of return (𝑖𝑟𝑟) and 

the average depreciation rate of the capital stock (delta) from PWT (Feenstra et al., 2015), we 

compute capital income by multiplying the produced capital stock with the sum of the real rate 

of return and the depreciation rate: (𝑖𝑟𝑟 + 𝑑𝑒𝑙𝑡𝑎) ∗ 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 𝑠𝑡𝑜𝑐𝑘. For land 

income, we multiply the real rate of return with the capital stock of land: 𝑖𝑟𝑟 ∗ 𝑙𝑎𝑛𝑑.  

Next, we calculate the capital income ratio as capital income divided by the sum of capital and 

land income. We regress the capital income ratio on the log of capital per capita and the log of 

total land per capita, where capital per capita reflects capital services divided by total 

population, and this data is retrieved from PWT (Feenstra et al., 2015). Additionally, total land 

(area land) comes from FAOSTAT. For this set of countries, we find that the capital/land 

division can be predicted from each country’s capital and land intensity. We use these predicted 

values to impute values for land and capital income for the countries in our dataset. Since we 

have data on labor income, data on capital and land income can also be retrieved. Hence, we 

can thus compute the total income flowing to labor, capital and land (factor-level totals), and 

for each sector, we have data on (nominal) value added, which is the income flowing to that 

sector (sector-level totals). Next, we iteratively adjust sector income (using U.S. data as initial 

values) to sum to factor-level totals and to sector-level totals, a procedure also known as the 

RAS method (note that RAS is used as well in the trade PPP calculation). This RAS method 

quickly converges to a set of sectoral income flows that are consistent with both sets of totals.  

Estimating TFP when employment equals zero 

A sector that requires careful attention with regards to productivity measurement is real estate. 

This sector produces value added but does not have an employment equivalent. Therefore, we 

estimate TFP for this sector by only considering capital and land as primary factor inputs 

involved in producing output. Freeman et al. (2021) devised an approach to measure 

productivity in a setting where a production unit does not utilize all primary factor inputs, and 

we follow their approach. That is, we first adjust sectoral value added by subtracting labor 

compensation: 
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�̃�𝑖𝑗 = (1 − 𝛼𝑖𝑗) ∗ 𝑣𝑖𝑗 (A5)  

Similarly, the PPP used to deflate value added also needs to be adjusted to be the appropriate 

deflator for the modified value added estimate. We do this as follows. First, we compute the 

share of value added and labor compensation in modified value added: 

𝜅𝑖𝑗 =
𝑣𝑖𝑗
�̃�𝑖𝑗
 (A6) 

𝜎𝑖𝑗 =
𝛼𝑖𝑗𝑣𝑖𝑗
�̃�𝑖𝑗

 (A7) 

Next, we estimate a modified value added PPP (USA=1) by subtracting the price of labor 

(𝑃𝑃𝑃ℎ) from the value added PPP: 

ln 𝑃𝑃�̃�𝑖𝑗 =𝜅𝑖𝑗,·(ln𝑃𝑃𝑃𝑖𝑗
𝑉𝐴 − ln𝑃𝑃𝑃𝑖𝑉𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅) − 𝜎𝑖𝑗,·(ln𝑃𝑃𝑃𝑖𝑗

ℎ − ln𝑃𝑃𝑃𝑖ℎ̅̅ ̅̅ ̅̅ ̅) (A8) 

Where ln 𝑃𝑃𝑃̅̅ ̅̅ ̅̅ =
1

𝐽
∑ 𝑙𝑛𝐽 𝑃𝑃𝑃 ; the cross-country average of ln PPP, 𝜅𝑖𝑗,· =

1

2
(𝜅𝑖𝑗 +

1

𝐽
∑ 𝜅𝑖𝑗)𝐽 ; 

the average of the share 𝜅 in sector i in country j and of the cross-country average share, and 

𝜎𝑖𝑗,· =
1

2
(𝜎𝑖𝑗 +

1

𝐽
∑ 𝜎𝑖𝑗)𝐽 ; average of the share 𝜎 in sector i in country j and of the cross-country 

average share.  

The PPP for labor 𝑃𝑃𝑃ℎ  is estimated based on country-level relative wages, where we divide 

the wage w in country j by the wage in the U.S., the base country: 

𝑃𝑃𝑃ℎ =
𝑤𝑗
𝑤𝑢𝑠𝑎

 (A9) 

In turn, wages are estimated by dividing labor compensation by employment (adjusted for 

human capital): 

𝑤𝑗 =
𝛼𝑗 ∗ 𝑣𝑗

𝐸𝑀𝑃𝑗 ∗ 𝐻𝐶𝑗
 (A10) 

With the adjusted VA PPP, we are able to deflate the modified value added where labor 

compensation has been subtracted from:  

�̃�𝑖𝑗 =
�̃�𝑖𝑗

𝑃𝑃�̃�𝑖𝑗
 (A11) 

Finally, we estimate TFP as before, but now with only capital K and land L as factor inputs (we 

use capital letters here to point out that capital and land are not denoted in per-worker terms), 

where the factor shares 휃̃ and �̃� add up to one: 
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�̃�𝑖𝑗 =
�̃�𝑖𝑗

(𝐾𝑖𝑗)
�̃�𝑖𝑗
(𝐿𝑖𝑗)

�̃�𝑖𝑗
 (A12) 

Effect of different assumptions on TFP 

To provide an example of the impact of the different measurement methods and assumptions 

on TFP, Table A7 below shows estimates for the agricultural sector in India relative to the US 

in 2017. This comparison of relative levels may help build intuition for the type of changes 

seen in Table 6 of the main text. As the Table shows, the use of expenditure versus value added 

PPPs has a notable impact on the TFP estimates. The PPP for agricultural value added, at 70 

rupees to the dollar, is much closer to the exchange rate of 65, while the PPP based on retail 

prices for food is much lower at 32. Relaxing the assumption of the same MPL has a smaller 

impact as does using our estimates for the sectoral factor shares. Restricting the sample to the 

set of SEA countries leads to a higher productivity level. The difference is relatively large, in 

most cases the difference between the samples is less than 2 percent. The reason the difference 

in sample matters is that the multilateral productivity index compares each country to an 

average country and in the case of agriculture, the difference in estimated factor shares makes 

a notable difference in the parameters for this average. Recall that in Table 2, the average 

interquartile range of factor shares was notably larger in agriculture than in other sectors, 14 

percentage points versus 5 percentage points (on average) for the other sectors. Finally, 

allowing for variation in the MPK leads to higher productivity levels still. This indicates that 

using the capital income share overestimates agricultural capital input compared to using the 

capital stock share. 

Appendix Table A7. TFP in agriculture in India, 2017, USA=1. 

Measurement variant TFP level 

Expenditure PPPs 0.78 

Same MPL 0.36 

Same factor shares 0.32 

Baseline 0.38 

Baseline (SEA sample) 0.45 

Varying MPK 0.57 
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