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Abstract

Malaria is the primary cause of death among children and a barrier to childhood hu-
man capital accumulation in sub-Saharan Africa. The macroeconomics literature thus far
concludes that eradicating malaria would mainly increase populations but not substan-
tially raise living standards. This paper reassesses this conclusion by modeling and quan-
tifying the long-run macroeconomic effects of a successful malaria vaccine. To do so, I
build a general-equilibrium, overlapping generations model of childhood human capital
accumulation and endogenous fertility with malaria modeled as a health shock to chil-
dren. To parameterize the model, I estimate the short-run effects of reduced malaria risk
on women’s fertility and children’s human capital using difference-in-differences with a
recent large-scale anti-malaria campaign in Tanzania. I use these estimates to calibrate
the model’s parameters and simulate the long-run general equilibrium impacts of malaria
vaccines. The model suggests that a universal vaccination would increase per-capita GDP
by 30% within 60 years, which is nearly ten times larger than previously estimated. The
larger gains stem from higher human capital investments beyond simple increases in years
of schooling, amplified over multiple generations.
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1. Introduction

Despite preventive technologies and treatment, malaria is still the leading cause of death and

a barrier to children’s human capital accumulation in sub-Saharan Africa. In 2020 alone, more

than 600,000 people died from malaria, mostly African children under five years old (World

Health Organization, 2021). Children who survive are also known to suffer from long-lasting

cognitive impairments and co-morbidities (Fernando et al., 2010; Chen et al., 2016), which

adversely affect their learning outcomes. In recent years, however, scientists have taken a

major step towards eliminating malaria, as the newly developed vaccine is reported provide

up to 80% protection against infections among young children (Datoo et al., 2022).

How will the new malaria vaccine change the macroeconomic outlook of sub-Saharan African

countries? One view in the macroeconomics literature thus far is that eliminating malaria

would mainly increase populations but not substantially raise living standards. For example,

Acemoglu and Johnson (2007) study the effects of large improvements in life expectancy in

the 1940s driven by international health interventions, more effective public health measures,

and the introduction of new chemicals. The study concludes that the improvements in life ex-

pectancy had little impact on GDP per capita but only increased populations. Ashraf, Lester, and

Weil (2008) corroborate this view, arguing that eradicating malaria in a typical sub-Saharan

African country would increase GDP per capita only by two percent over a 60-year horizon.

This paper reassesses this conclusion by modeling and quantifying the long-run macroeco-

nomic effects of a successful malaria vaccine and argues that the increase in long-run output

per capita from eliminating malaria is much larger than the existing estimates. I focus on

several new features that have been absent from previous macroeconomic studies of disease

eradication. The first is a quantity-quality tradeoff parents face when making fertility and in-

vestment decisions in children. The second is a richer measurement of human capital than just

years of schooling, as in Manuelli and Seshadri (2014). Using years of schooling as a measure

of human capital implicitly assumes that one year of schooling delivers the same increase in

human capital before and after eliminating malaria (Hanushek and Woessmann, 2008). How-

ever, eliminating malaria also allows children to learn more from schooling, increasing the

amount of human capital gained per year of schooling. The third is the intergenerational dy-

namics, as healthier children may subsequently adjust their fertility and invest more in their

own children’s education.

I incorporate these features into a general equilibrium, heterogeneous-agent, overlapping gen-

erations model which allows for the interplay of fertility, childhood human capital accumula-

tion, and childhood diseases. In the model, parents endogenously choose how many children
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to have as well as the educational attainment of their children. Children are born with ex-

ogenously heterogeneous learning abilities inherited stochastically from their parents. Parents

base their fertility decision on assets, income, and tastes for children. Parents also make a

decision on whether to educate their children or send them to work by comparing the higher

income and consumption today from child labor against the higher future utility their children

will enjoy if they receive more education. Children’s subsequent outcomes are then determined

by their learning ability, the educational choice made by parents, and the skill-contingent wages

determined in the competitive labor market.

I then introduce childhood disease into the model as an idiosyncratic health shock to children.

Health shock in the model consists of two dimensions; mortality and morbidity. Mortality re-

flects the deaths caused by diseases, and morbidity represents the long-term cognitive damage

on children, which dampens their human capital accumulation. A key feature of the model

is that childhood disease interacts with parents’ education and fertility decisions through the

quantity-quality tradeoff (Barro and Becker, 1989). Within the quantity-quality framework,

eliminating a disease has two opposing effects. On the one hand, lower mortality from the

elimination lowers the price of child quantity, inducing parents to have more children and re-

ducing per-child educational investment. On the other hand, reduced morbidity lowers the

price of child quality, inducing parents to have fewer children and educate each child more.

In the model, these two effects are summarized by two sufficient statistics which govern the

long-run effects of disease elimination: fertility and education elasticities of disease.

To estimate the size of the fertility and education elasticities of malaria, I exploit a recent large-

scale antimalarial campaign in sub-Saharan Africa, the Roll Back Malaria (RBM) campaign.

Starting from 2003, the RBM campaign significantly reduced malaria prevalence through its

aggressive distribution of preventive and treatment technologies, such as insecticide-treated

nets (ITNs) and indoor residual spraying (IRS). I focus on Tanzania, one of the few countries

where the campaign started at its earliest phase. Exploiting regional variation in the campaign’s

intensity, I estimate the effects of the reduced malaria risk on women’s fertility and children’s

years of schooling through a difference-in-differences design. Consistent with the previous

studies, I find that the reduced prevalence of malaria due to the campaign led to an average

of 0.63 more years of schooling for the benefited children.1 I also find that women in the

highest malaria prevalence regions reduced their fertility by 5.9%. However, although fewer

children were born, the campaign did not change the number of surviving children because

1For empirical studies found positive effects of reduced malaria risk on children’s educational attainment, see
Lucas (2010); Venkataramani (2012); Barofsky et al. (2015); Shih and Lin (2018); Kuecken et al. (2021). For
studies focusing on adulthood outcomes such as income or consumption, see Cutler et al. (2010); Bleakley (2010).
Unlike this paper, most of these studies used historical episodes of malaria eradication.
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the campaign also reduced child mortality by 10%.

I quantitatively solve for the balanced growth path and bring the estimated elasticities to the

model by replicating the Roll Back Malaria campaign within the model and matching the cam-

paign’s simulated causal effects to their empirical counterparts; a 0.63 year increase in chil-

dren’s schooling and a muted response of fertility. To ensure the model is credible in other

dimensions, I jointly estimate parameters to match the empirical elasticities and other relevant

aggregate moments of the Tanzanian economy, such as educational attainment and intergen-

erational mobility measures. Since the causal effects of reduced malaria risk on children’s

education outcomes and women’s fertility are also estimated in Tanzania, all the moments

used for calibration are from a single country.

Using the estimated model, I then simulate the long-run general equilibrium effects of a na-

tional malaria vaccine policy by solving for a new balanced growth path of the economy under

the vaccination policy. The model predicts per capita income would rise by 34% within 60

years. Compared to the short-run, one-generational effects of policy, the long-run increase in

per capita output is twice as large as the short-run counterpart, highlighting the importance of

the intergenerational amplification channel. While the lowered mortality rate from vaccina-

tion is expected to put upward pressure on the population, the population growth rate on the

post-vaccine balanced growth path is only modestly higher because households choose to have

fewer children in the long run. The model also predicts a significant increase in both primary

and secondary school completion rates and an improvement in intergenerational mobility in

terms of education. While only 40% and 3% of the children born to uneducated parents com-

plete primary and secondary education before the vaccination, the numbers increase to 52%

and 5%, respectively, in the post-vaccination balanced growth path.

The results are surprising because they are nearly ten times larger than the literature’s current

best estimates from the influential work by Acemoglu and Johnson (2007) and Ashraf, Lester,

and Weil (2008). Acemoglu and Johnson (2007) estimate the effects of life expectancy on

economic growth, using the major international health improvement in the 1940s (the inter-

national epidemiological transition) as a natural experiment. They conclude that while im-

provement in life expectancy leads to an increase in population, it does not lead to an increase

in GDP per capita. A key difference between the international epidemiological transition in

the 1940s and malaria vaccines is that while the former mostly lowered mortality without in-

creasing the returns to education, the latter would lower the mortality and raise the returns to

education. I simulate a counterfactual long-run balanced growth path where only the mortality

is lowered. Consistent with Acemoglu and Johnson (2007), the long-run increase in per capita

output shrinks from 34% to a mere 2%. The result suggests that the long-run growth effects
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of a health improvement hinge on whether it facilitates the accumulation of human capital.

Ashraf, Lester, and Weil (2008) specifically focus on malaria in sub-Saharan Africa. Using a

standard neoclassical framework, they simulate the effects of eradicating malaria in a typical

sub-Saharan African country and conclude that it would raise GDP per capita only by two per-

cent in the long run. The underlying reasons for these different results are the difference in the

measures of human capital and the omission of intergenerational dynamics. First, Ashraf et al.

(2008) treat malaria eradication as a one-time increase in human capital, rather than consid-

ering intergenerational dynamics that amplify the effects in the long run. Second, following

contemporary best practice, they employ years of schooling as a measure of human capital. An

implicit assumption behind this is that a year of schooling delivers the same increase in human

capital before and after eradication (Hanushek and Woessmann, 2008). However, eradicating

malaria would also make children healthier and perform better within school (Fernando et al.,

2010), an important margin that years of schooling cannot address. In the model, the increase

in years of schooling only explains 30% of the increase in human capital for the children born

after the vaccination, implying that focusing only on years of schooling could underestimate

the increase in human capital. In Section 5.2.2, I explore the quantitative implications of omit-

ting the intergenerational dynamics and using years of schooling as the human capital measure

and find that without the two channels, the long-run increase in output per capita is reduced

from 34% to 5%, much closer to the numbers found in Ashraf et al. (2008).

I conclude that eliminating malaria is not only a life-saving policy, but also a growth policy for

sub-Saharan African countries. The estimated model implies that once the long-run intergener-

ational effects and the better learning in school are considered, the long-run increase in output

per capita can be much larger than what is estimated in the literature thus far. This suggests

that removing malaria should be a high priority in development strategy for policymakers. The

results also imply that improving children’s health conditions in the developing world can raise

the living standard in the long-run, primarily through the higher human capital accumulation

of children. Such implication is consistent with the conclusions of the macro-development liter-

ature, which have been emphasizing the role of human capital in explaining the cross-country

income differences (Erosa, Koreshkova, and Restuccia, 2010; Schoellman, 2012; Hendricks

and Schoellman, 2018; De Philippis and Rossi, 2021).

While this paper specifically focuses on malaria, the model can easily be generalized to other

childhood infectious diseases and used as a framework to study the effects of improving health

on long-run economic growth. In this vein, this paper builds on a long literature that stud-

ied the relationship between health, human capital, and economic growth (Shastry and Weil,

2003; Caselli, 2005). Weil (2007) shows that eliminating health differences across countries
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has minor effects in narrowing the cross-country gaps in output per capita, while the quanti-

tative results in this paper suggest that such effects can be potentially larger. The theoretical

framework in this paper is related to those in Kalemli-Ozcan, Ryder, and Weil (2000); Kalemli-

Ozcan (2003); Soares (2005) and Doepke (2005), all of whom focused on the role of mortality

decline in human capital investment and growth. Lastly, the quantitative model of this paper

is perhaps most closely related to those in Daruich (2020) and Zhou (2021), who study the

long-run effects of education subsidy and family policies, respectively, using a general equilib-

rium, heterogeneous-agent overlapping generations model. However, none of these previous

studies considers diseases as a factor disrupting childhood human capital accumulation, which

the model suggests to be quantitatively important.

This paper also builds on a growing body of research in macroeconomic development that uses

dynamic general equilibrium models to understand the potential long-run general equilibrium

effects of development policies, using the short-run, partial equilibrium empirical evidence as

ingredients. In this vein, the quantitative exercises of this paper are related to those of Fried

and Lagakos (2022), who use a dynamic general equilibrium model to quantify the effects of

power outages on productivity in developing countries. Similarly, Buera, Kaboski, and Shin

(2021a) use a dynamic macroeconomic model of credit-constrained firms to study the general

equilibrium effects of microfinance, using the partial equilibrium estimates of microfinance to

discipline the model. Another example is Lagakos, Mobarak, and Waugh (2019), who quantify

the aggregate effects of rural-to-urban migration subsidies compared to the partial equilibrium

effects estimated from an RCT. Brooks and Donovan (2020) also use the reduced-form evidence

on the effects of rural bridge building to guide the general equilibrium effects of transportation

infrastructure.2

The rest of the paper is organized as follows. Section 2 lays out the quantitative model. Section

3 describes the data used to estimate key parameters and the estimation of empirical moments

used to discipline the rest of the model parameters. Section 4 explains the calibration strategy

and model validation results. Section 5 investigates the long-run general equilibrium effects

of a national malaria vaccination policy and compares the results to the previous estimates.

Section 6 concludes.

2See Buera, Kaboski, and Townsend (2021b) for a detailed review of the literature.
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2. Model

In this section, I introduce a general equilibrium overlapping generations model with endoge-

nous population dynamics, childhood human capital investment, and health risk. A household

consists of parents and cohabiting children. Parents endogenously choose how many children

to have as well as the educational level of their children, who are born with exogenously het-

erogeneous learning abilities. Children’s endowment when they become adult are determined

by their learning ability, the educational choice made by parents. Workers with different levels

of education are imperfect substitutes, and their education-contingent wages are determined

in a competitive labor market.

2.1. Environment

Demographics Time is discrete, and one model period is six years. The economy is populated

by a large number of overlapping generations of households who live for 66 years (12 periods in

total). Figure 1 shows the life cycle and family structure of a household. I use j ∈ {0,1, · · · ,12}
to denote the period of life.

t

j=0
(age=0)

j=3
(age=18)

j=4
(age=24)

j=8
(age=42)

j=11
(age=60)

j=12
(age=66)

Childhood Working Period Retirement

Primary
School

Secondary
School

Parent

Birth Become
Adult

Children
Born

Children
Independent Retire Death

t

age=0 age=6 age=12 age=18 age=24
Child

Birth Become
Adult

(Grand-)
Children

Born

Figure 1: Life cycle, family structure, and stages of life

Children live with their parents and do not make any decisions on their own until they reach

age 18, when they leave their parents and become independent with zero assets. Throughout

their adulthood, individuals choose consumption expenditure and savings. Borrowing is not

allowed but they can save through assets with exogenous interest rate r.3 parents choose how

3I abstract from domestic capital market to focus on the main mechanism of the model. Most countries in this
context are small open economy with under-developed capital market. I also omit the endogenous labor supply
retirement choice, due to high hours worked and short retirement periods in the developing worlds.
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many children to have at age 24, and conditional on having children, how much education their

children will receive until they become adults. There are two periods of schooling; parents have

to decide whether or not to send children to primary school when the children are six years

old, and secondary school when they are twelve years old. The initial human capital their

children possess is therefore directly influenced by the parents’ educational choice. Once the

children become independent, there is no further interaction between parents and children

and the human capital is fixed throughout the adulthood. All individuals retire at age 60 and

die at age 66. During the short retirement periods, individuals live off the assets they have

accumulated in the working period.

There are four exogenous sources of heterogeneity in the model. The first one is the standard,

idiosyncratic and uninsurable labor productivity shock vt for the working-age adults, which

makes earnings stochastic. I assume that the idiosyncratic labor productivity shock is i.i.d. and

drawn every period from a log-normal distribution:

log vt
iid∼ N(0,σv)

The second one is the fertility taste, which captures the fertility behaviors not attributed to

the model’s mechanism. I assume an extreme-value distribution-. The third one is the learn-

ing ability that every child is born with, which is imperfectly correlated between parents and

children. The last one is the health shock that children face, which represent the childhood

diseases, or malaria in our context. Health shock is drawn once at the early childhood when

the children are six years old, and lowers the returns from schooling in subsequent childhood

periods. I illustrate the way the ability and health shocks are drawn and how they interact with

the parents’ education decision in the next paragraphs.

Learning Ability Parents observe their children’s learning ability at the beginning of the pe-

riod j = 5, before they decide whether or not to send their children to primary school. The

learning ability within a household follows a AR(1) process:

logzk =ρz logzp+εz

where zk and zp are the learning ability of children and parents and εz is the idiosyncratic i.i.d.

shock. Therefore, learning ability is inherited across generations but only imperfectly.
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Diseases in Early Childhood In addition to the learning abilities, children also draw a id-

iosyncratic health shock at age six.4 The health shock has two dimensions: mortality and

morbidity. Mortality reflects the deaths caused by the diseases, and morbidity represents the

detrimental effects of the diseases on human capital accumulation. Mortality risk is manifested

as a survival probability. Specifically, the probability an age-6 child survives to the next period

is given as χd . Morbidity risk is represented by a proportional reduction in the learning abil-

ity, reflecting that children with malaria suffer from worse learning outcomes during and after

bouts of malaria (Fernando et al., 2010). I discuss how the lowered learning ability affects chil-

dren’s human capital accumulation in the next paragraph. Specifically, I denote the morbidity

shock as m:

m=







1 w/ probability 1−χm

m w/ probability χm

where m< 1. Here, m denotes the health status of a child hit by the adverse morbidity shock,

while the status of a healthy child is normalized to one. The probability that a child is stricken

with a negative morbidity shock is given as χm.

Schooling After observing their children’s learning ability zk and the health shock m they

have drawn, parents decide whether to send their age-6 children to the primary school. School-

ing increases human capital deterministically:

hk,t+1=







max{mzkηshk,t ,hk} if attend school

hk otherwise

where ηs is the deterministic increase in human capital from school s, s∈{Primary,Secondary}.
Sending children to school costs money, which are represented by the per-child schooling fee

pP , pS for primary and secondary school, respectively. The schooling fee encompasses the tu-

ition, uniforms, schooling supplies such as textbooks, etc., representing the goods cost of edu-

cation. Children can work instead of going to school (child labor). Lastly, schooling decision

is sequential; if parents do not send their primary school aged child to school and have them

work instead, the child does not have the opportunity to attend the secondary school in the

next period.

4The assumption that the health shock is realized at age 6 can be understood as parents learn about their
children’s health status by the time they enter primary school.
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Production and Aggregation I assume that there is a profit-maximizing representative firm

in the labor market. The representative firm uses skilled (secondary education completed) and

unskilled (below secondary education) labor to produce the single consumption good with the

following CES aggregate production function:

Y = A
h

(HU +HP)
λ−1
λ +(HS)

λ−1
λ

i
λ
λ−1

, λ∈ (0,∞)

Here, Hs denotes the aggregate efficiency unit of schooling groups U (uneducated), P (primary-

completed) and S (secondary-completed), and λ is the elasticity of substitution between the

two skill groups. Equilibrium wages for each skill group are then determined as:

wU = A
h

(HU +HP)
λ−1
λ +(HS)

λ−1
λ

i
1
λ−1
(HU +HP)

− 1
λ

wS = A
h

(HU +HP)
λ−1
λ +(HS)

λ−1
λ

i
1
λ−1

H
− 1
λ

S

Since the wages wU and wS are per efficiency unit, the labor income of an individual with skill

level s, human capital h, and idiosyncratic shock v is given as y(h, v,s) = hvws.

2.2. Recursive Formulation of Decision Problems

From independence, an individual’s adulthood can be broadly divided into two stages depend-

ing on whether they are alone or live with their children. In both stages, individuals solve

consumption-savings optimization problem. When with children, however, they make addi-

tional decisions on fertility and children’s education. In this subsection, I explain the individual

optimization problem in each period of life. Borrowing is limited in all periods (a′ ≥ 0), and

I suppress the expression in following formulations to simplify the notations. Throughout this

section, I will denote all child variables with subscript k, and future variables with primes.

Age 18 ( j = 3): Independence Individuals leave their parents and form a new household

at age 18 with zero assets. Their initial states are human capital h, schooling level s which

is determined in the childhood, and the learning ability z. While the learning ability is not

relevant for themselves, it is still included as a state variable because their own children’s

learning abilities will depend on it. Their income is determined by their human capital h,

wage rate ws, and the idiosyncratic income shock v drawn at the beginning of the period.
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Since they do not have children yet, they solve a standard consumption-savings problem:

V3(a,s,h, v) =max
c,a′

u(c)+βE
�

V4
�

a′,s,h, v′
�

�

subject to

c+a′≤wshv+(1+ r)a

(1)

where r is the period interest rate.

Age 24 ( j = 4): Fertility At this stage, individuals decide how many children to have, and

those who choose to have children become parents. Fertility choice is discrete; individuals

choose the number of children n, where n∈ {0,1,2, · · · , N̄}, by choosing n∗ that gives them the

highest level of utility:

V4=max{V 0
4 +φ0,V 1

4 +φ1, · · · ,V N̄
4 +φN̄}

where V n
4 represents the value functions of having n number of children. For each number of

children n, I also introduce a taste shock φn, which are drawn i.i.d. from a Gumbel distribution

with variance σn. The value function corresponding to haveing n children can be written as

follows:

V n
4 (a,s,h,z, v) =max

c,a′
u(c)+βE

�

V5
�

a′,s,h, v′,z′k,m′,n′
�

�

subject to

c+a′≤wshv(1− t(n))+(1+ r)a

t(n) =ω1nω2

(2)

where φ is the vector of fertility taste shock draws. Raising children is costly. Specifically,

t(n) amount of parental time is taken away, reducing the available income for consumption

and savings. The total time cost is increasing in h and n, reflecting the fact that the sacrificed

working hour is more costly to high-income households than low-income ones. Lastly, note

that the expectation is taken over the number of surviving children in the next period, n′. This

is due to the realization of the health shock in the next period.

Age 30 ( j = 5): Ability, Health Shock and Primary Education At the beginning of this

period, parents observe children’s ability zk and the realization of health shock m, and draw

the idiosyncratic income shock v. The number of surviving children n is determined depending
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on how many children are hit by the mortality shock. Specifically, the probability that n out of

N children survive is:

f (n;N) =
�

N
n

�

(χd)N−n(1−χd)n

Parents then decide whether to send their children (if any) to primary school (e= 1) or work-

place (e= 0). If children attend school, a per-child primary schooling fee pP is deducted from

the parents’ budget constraint. If the children go to workplace instead (child labor), their

income is added to the parents’ budget. Since the working children did not receive any edu-

cation, their have one (initial) level of human capital and receive unskilled wages.5 A parent’s

value function with n number of surviving children at this stage is written as follows:

V5(a,s,h, v,zk,m,n) = max
c,a′,e∈{0,1}

u(c)+βE
�

V6
�

a′,s,h, v′,s′k,h′k,zk,m,n
�

�

subject to

c+a′+ enpP ≤wshv(1− t(n))+nwU v(1− e)+(1+ r)a

h′k = ehkηPzkm+(1− e)hk

(3)

Age 36 ( j = 6): Secondary Education and Dynastic Altruism Parents who had sent their

children to the primary school in the previous period decide whether to continue sending chil-

dren to secondary school. Because of the sequential nature of the schooling system, parents

who did not send their children to the primary school do not have option to send them to sec-

ondary school (e= 0 for them). The value function of the parents with secondary school age

children is:

V6(a,s,h, v,sk,hk,zk,m,n) = max
c,a′,e∈{0,1}

u(c)+βE
�

V7
�

a′,s,h, v′
�

�

+β b(n)E
�

V4,k
�

s′k,h′k,zk, v′k
�

�

subject to

c+a′+npSe≤wshv(1− t(n))+nwsk
hkv(1− e)+(1+ r)a

h′k = ehkηSzkm+(1− e)hk

(4)

Note that the value function at this stage now includes the continuation value of the children,

V4,k, discounted by the altruism function b(n). Since the problem is written recursively, this

continuation value captures the parental altruism toward their children; they take into account

the utility value of all of their descendants and make decisions accordingly.

5I assume that the children’s income is also subject to the same idiosyncratic income shock v that their parents
have drawn; the income shock is common across the household members.
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Age 42 to 66 ( j = 7−12): Mature Parents with Grown-up Children At the beginning of

the period 7, children become independent and leave their parents. Once the children become

independent, there is no further interaction between parents and children and parents solve a

simple consumption-savings problem. Value of working-age individuals after the child-rearing

periods is the same as (1). At age 60, households retire and are assumed to provide no work.

The value function after retirement is given as:

Vj(a) =max
c,a′

u(c)+βVj+1
�

a′
�

c+a′≤ (1+ r)a

2.3. Competitive Equilibrium and Balanced Growth Path

In this economy, population is endogenous due to the endogenous fertility. Therefore, I focus

on a balanced growth path of the economy where the population growth rate remains constant

over time, as does the distribution of households’ state variables. I introduce the concepts of

the recursive competitive equilibrium and the balanced growth path below.

Recursive Competitive Equilibrium To save notations, define the vector of age- j individual’s

state variables (a,s, v,sk,hk,zk,m,n) as X j and the distribution of the age- j state variables as

µ(X j). A recursive competitive equilibrium consists of

(a) Household value functions Vj(X) and policy functions c j(X),a′j(X),n4(X),e5(X),e6(X)

(b) Prices for each skill group wU and wS

such that

(i) V,a′,c,n4,e5,e6 solve the individual’s optimization problem conditional on wU and wS

(ii) The representative firm maximizes its profit:

wU = A
h

(HU +HP)
λ−1
λ +(HS)

λ−1
λ

i
1
λ−1
(HU +HP)

− 1
λ

wS = A
h

(HU +HP)
λ−1
λ +(HS)

λ−1
λ

i
1
λ−1

H
− 1
λ

S

(iii) Prices clear the labor market
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Balanced Growth Path A balanced growth path is a particular case of recursive competi-

tive equilibrium which satisfies further conditions and is defined below. Let P the aggregate

population. A balanced growth path is a recursive competitive equilibrium that satisfies:

(a) Aggregate population grows at a constant rate: P′
P = ν for some constant ν

(b) The distribution of households is stationary: µ′(X j) =µ(X j) ∀ j

(c) Decision rules (a) are stationary and do not depend on P

3. Empirical Analysis of the Effects of Malaria on Fertility and

Children’s Human Capital

The model has a rich set of interactions between disease, fertility, and children’s human capital,

which is encapsulated by the quantity-quality tradeoff. Within this framework, eliminating a

disease has two opposing effects. On the one hand, lower mortality from the elimination

lowers the price of child quantity, inducing parents to have more children and reducing per-

child educational investment. On the other hand, reduced morbidity lowers the price of child

quality, inducing parents to have fewer children and educate each child more. In the model,

these two effects can be summarized by sufficient statistics: fertility and education elasticities

of disease. Since these two elasticities govern how parents adjust their fertility and education

decisions in response to a better health environment, the sizes of these elasticities are essential

to understand the long-run effects of disease elimination.

To ensure that the model’s implied elasticities are indeed credible, I empirically estimate the

elasticities and ask the model to replicate them. To this end, I use the Roll Back Malaria cam-

paign, a recent large-scale anti-malaria campaign that took place in many sub-Saharan African

countries. I focus on one country, Tanzania, and employ a difference-in-differences design to

identify the causal effect of the reduction of malaria burden on fertility and children’s human

capital, exploiting the spatial variations in pre-campaign malaria prevalence as the identifying

variations.

3.1. Background: The Roll-Back Malaria Campaign in sub-Saharan Africa

It’s worth looking at the malaria situation in Tanzania and how the campaign was implemented.

Before the Roll Back Malaria (RBM henceforth) campaign started, more than 90% of Tanzania’s

population was at risk of malaria, putting the nation in a high malaria burden category. Malaria

was also a huge contributor to childhood deaths in Tanzania; there were, on average, around

11 million clinical malaria cases per year prior to the campaign (National Malaria Control
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Programme, 2010), contributing to about 36% of all deaths in Tanzania in children under

five. Despite such a high burden, little effort was taken to reduce malaria transmission. Prior

to 2003, the coverage of insecticide-treated nets (ITNs) was nearly zero everywhere in the

country.

The Roll Back Malaria Partnership was launched jointly by the WHO, the World Bank, and the

United Nations in 1998, aiming to halve the malaria burden between 2000 and 2010. A major

difference between the RBM from previous anti-malarial movements was its unprecedented

level of external funding - approximately $4.6 billion between 2003–2009. Between 2003 and

2009, 81 of the 108 malaria-endemic received financial support from the global community

for their malaria-control work (Johansson et al., 2010). As sub-Saharan Africa accounted for

around 85% of the global malaria burden, a large fraction of the financial aid was concentrated

in Africa. The strategy the RBM adopted was massive distribution of insecticide-treated nets

(ITN) and indoor residual spraying (IRS), both proven methods of reducing malaria transmis-

sion. With coordinated actions across countries for a decade, worldwide malaria death were

cut in half in 2014. Among the recipient countries, Tanzania provides an ideal setting to study

the effects of the RBM campaign as a representative sub-Saharan African country with high

malaria burden. It is one of the twelve malaria-endemic countries which received financial

support from as early as 2003 (Johansson et al., 2010), and where the RBM campaign was

highly successful in reducing the disease burden.

The financial support from the RBM enabled the Tanzanian government to scale up the malaria

interventions to the entire country. For example, ITNs started to be distributed to the most

vulnerable groups in 2004, and free long-lasting insecticidal nets (LLINs) were delivered to

children under five years old starting in 2009. Indoor Residual Spraying (IRS) was introduced

to epidemic-prone areas in 2009 (National Malaria Control Programme, 2010). As a result of

the coordinated efforts, Tanzania’s malaria prevalence had been reduced significantly by 2012,

about a decade after the onset of the RBM campaign. Figure 2 shows the reduction in malaria

prevalence during this period. Malaria prevalence is measured by PfPR2−10, which represents

the proportion of children between the age of 2 and 10 who are found to carry P.falciparum

parasites in their blood. PfPR2−10 is a commonly used index to measure malaria prevalence

and its transmission intensity, which I continue to use as a proxy of malaria prevalence in the

subsequent sections.

Tanzania is an exemplary country where the RBM significantly reduced the malaria burden,

and available microdata also allows us to estimate the effects of the campaign on fertility and

child human capital outcomes. The main dataset I am leveraging is the Population Census,

which has three waves: 1988, 2002, and 2012. Unlike the commonly used Demographic and
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Health Survey (DHS) data, the Census data provides a broader range of variables and hence

enables us to better identify the effects of the RBM on our outcome variables of interest. In the

next subsection, I explain the dataset’s structure and advantages over other commonly used

datasets.

3.2. Data

There are two main datasets I use for the empirical analysis. First, the information on malaria

prevalence is derived from the Malaria Atlas Project (MAP). Second, household and individual

level information on socioeconomic characteristics, mortality, fertility, and parental investment

in children’s human capital are from the three waves of the Tanzania National Population Cen-

sus. I describe both datasets separately below.

Malaria Atlas Project (MAP) I obtain information on malaria prevalence prior to the inter-

vention from the Malaria Atlas Project (MAP). The MAP provides annual estimates of malaria

prevalence for a number of sub-Saharan African countries. Within each country, regional esti-

mates are up to second-level administrative units (corresponding to the GIS-2 level). Using this

data, I can recover the spatial distribution of malaria risk before and after the RBM campaign. I

use the region-level average of the PfPR as a measure of malaria prevalence. Figure A.1 shows

the changes in PfPR from 2001 (pre-campaign) and 2012 (post-campaign). As shown in the

figure, regions with high malaria prevalence in 2001 experienced a larger reduction in malaria

burden after the campaign.

I merge the regional malaria prevalence data from MAP to the Tanzania National Census using

the region of residence of the Census households. MAP follows the administrative boundaries

announced by the Tanzania National Bureau of Statistics in 2012. In cases where administra-

tive boundaries have changed over time, I harmonized them using the spatially harmonized

geographic boundaries between 1988 and 2012 provided by the IPUMS-International.

Tanzania Population Census Household- and individual-level data on fertility and educa-

tional attainment are obtained from the Tanzania National Census, which has three waves:

1988, 2002, and 2012. Three outcome variables are of interest: mortality, fertility, and chil-

dren’s schooling (as a proxy for their human capital). The Census asked each female survey

respondent for a complete birth history: the timing and number of every child they had given

birth to, including those deceased at the time of the survey. I use the number of children who

ever died to measure mortality. For fertility, I use the number of children ever born and the

number of surviving children. The former is the number of all births a woman had given, in-
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Figure 2: Spatial distribution of malaria prevalence rate, pre- and post- campaign

(a) PfPR in 2001

(b) PfPR in 2012

Notes: Geographic boundary is at the level of districts, which are the second level administrative units

in Tanzania. Boundaries are harmonized between 1988 and 2012, to account for political boundary

changes across census years. Data downloaded from the IPUMS-International (Minnesota Population

Center, 2020). PfPR data are taken from Malaria Atlas Project (MAP).
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cluding children who died. Hence, this variable captures the gross fertility. On the other hand,

the number of surviving children represents the net fertility. For mortality and fertility, I restrict

the sample to women between the age of 35 and 49. Lastly, I used years of schooling, which

is the total number of years a child had attended by the time of the survey for the children’s

human capital.

It is worth noting the advantages of using the Census data over the commonly used Demo-

graphic and Health Survey (DHS) data in estimating the effects of anti-malaria campaigns on

our outcomes of interest. First, unlike the DHS data, the Census collects not only the regions

of residence but also the region of birth. By restricting the sample to those born and residing

in the same place, I can control for internal migration, which could be a potential confounding

factor in estimation. Second, although the DHS covers many different sub-Saharan African

countries, focusing on one specific country alleviates the problems coming from different tim-

ing of intervention across countries. Recent econometrics literature has pointed out that when

there is heterogeneity in the timing of the treatment across groups, the two-way fixed effects

(TWFE) difference-in-differences estimates can be biased (Callaway and Sant’Anna, 2021).

Since the RBM campaign began to roll out at the national level in 2003, my estimates are free

from such concerns.

3.3. Empirical Specification and Identification

The estimation strategy employed here is similar to those used in Wilde et al. (2019) and

Kuecken et al. (2021). Since the RBM campaign was targeted toward the area with high

malaria prevalence, I exploit the pre-campaign malaria prevalence as a proxy for the campaign

intensity. I employ a difference-in-differences model with discrete treatment intensity, where

each region falls into one of the four categories representing a different level of pre-campaign

level of malaria prevalence. Specifically, I use the PfPR in the year 2001 as a criterion to

allocate regions into the treatment category. The four campaign intensity categories are as

follows: low prevalence regions (regions with PfPR < 20% in 2001), medium-low prevalence

regions (PfPR between 20−50% in 2001), medium-high prevalence regions (PfPR between

50−75% in 2001), and high prevalence regions with PfPR > 75% in 2001.6

For mortality and fertility, where the dependent variables are count variables (number of chil-

6The thresholds used for the categorization are consistent with the standard cutoffs used in epidemiological
studies of malaria, except that the malariometry literature label a region as low prevalence (hypoendemic) when
the prevalence rate is less than 10%. However, the purpose of such classification is to facilitate easier communi-
cation between epidemiologist. For the purpose of the empirical analysis, I use the 20% cutoff as a baseline and
conduct robustness analysis with different cutoff values. Appendix C contains the robustness results from using
different grouping.
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dren ever born or died), I estimate a Poisson regression model, in which the dependent vari-

able is the logarithm of the expected number of child death/birth experienced by the woman.7

Specifically, I estimate the following mortality and fertility equations:

M c
ir t = β

m
1 Postt+

4
∑

j=2

βm
j Postt×Prev j

r,2001+X i jc t
′ ·Γ +ηr (5)

F c
ir t = β

f
1 Postt+

4
∑

j=2

β
f
j Postt×Prev j

r,2001+X i jc t
′ ·Γ +ηr (6)

where M c
ir t and F c

ir t is the logarithm of the expected number of child death or birth experienced

by the woman i in age group c at time t, who was born and surveyed in the region r. The

variable Postt is the dummy indicating the pre-and post-treatment. It has a value of one in

2012 and zero in 2002. Prev j
r,2001 is the indicator of whether a region r is in the prevalence

group j, where j ∈ {2,3,4} with 4 being the highest prevalence regions where PfPR exceeds

75%. Lastly, X i jc t is the vector of control variables, which are the age and years of schooling

of the respondents and urban-rural residential status. I also include fixed effects for regions in

all specifications.

For education outcomes, I estimate the following OLS regression:

Ec
ir t = β

e
1Postt+

4
∑

j=2

β e
j Postt×Prev j

r,2001+X i jc t
′ ·Γ +ηr+εi j t (7)

where Ec
ir t is the years of schooling of a child i in age group c at time t, who were born and

surveyed in the region r. The rest of the variables are the same as the fertility and mortality

models, except that the years of schooling is now excluded from the control variables. Unlike

the fertility and mortality regressions, the sample now includes both male and female respon-

dents.

In the empirical analysis, I primarily focus on the the low- and high-prevalence regions as

control and treatment groups. As seen in Figure A.2, malaria prevalence was consistently low

throughout the 2001-2012 period in the low prevalence regions, and there is a clear reduc-

tion of prevalence in the high prevalence regions at the onset of the RBM program in 2003.

Although the other regions in the medium-low and medium-high prevalence categories also

experienced a reduction in malaria prevalence, it is unclear whether such a reduction was due

7Poisson regression is a commonly used method in the analysis of survival data. See Lu and Vogl (2022) for
an application to the analysis of child mortality.
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to the RBM campaign because there is a pre-existing secular decline in the PfPR.8 Appendix

Table B1 reports the descriptive statistics for the entire sample as well as for the high- and

low-prevalence regions.

The main parameter of interest in all specifications is β4, which is on the interaction between

Postt and Prev4
r,2001. For instance, if the RBM campaign was effective in reducing malaria-

related mortality among children and women’s fertility in the high malaria prevalence regions,

we would expect β f ,m
4 < 0. Similarly, if the RBM campaign’s effect on children’s educational

attainment was positive, we would expect β e
4 > 0.

3.4. Results and Interpretation

3.4.1. Child quality: RBM’s effects on children’s educational attainment

Figure A.5 and A.6 illustrates the parallel trends in years of schooling between the high- and

low-prevalence regions from 1998 and 2012, and Table 1 presents the results of the regression

(7). Each column reports the estimate of β e
4 coefficients for different age groups. Columns

1 to 3 correspond to the cohorts of children likely to be affected by the RBM campaign, with

descending intensity. For instance, the children between 10 to 15 years old in 2012 (column 1)

represent the children born after the RBM campaign, hence likely to be fully benefited from the

campaign. On the other hand, the last column represents an older cohort who are not likely

to be benefited from the campaign, since these individuals were already beyond the school

age and likely to have finished education. In that sense, the column can be interpreted as a

placebo group. I only report the coefficients on the interaction of the post-treatment dummy

and the indicator for the high-prevalence regions, since I am comparing the lowest and highest

prevalence regions as control and treatment groups.

The positive and significant coefficients indicate that the children born in the regions with the

highest malaria prevalence in 2001, and hence benefited the most from the RBM campaign,

experienced an increase in years of schooling.9 Compared to the low-prevalence regions, chil-

dren in the highest prevalence regions who were between age 1 and 6 when the campaign

began had additional 0.63 years of schooling. Children who were already in school when the

campaign started had also benefited from it; those who were between 6 to 11 years old also ex-

perienced additional 0.97 years of schooling. However, the positive effects of the RBM dissipate

for older age group (age 25-30 in 2012), as those individuals were likely to have completed

schooling already when the campaign started in 2003.

8Results are robust to the exclusion of middle two prevalence groups and available upon request.
9Results are similar between boys and girls. Appendix Table D2 contains the results from the same regression

run separately by gender.
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Table 1: Effects of the RBM on Years of Schooling

Age group in 2012

Age 10-15 Age 15-20 Age 20-25 Age 25-30

Dependent variable mean in 2012 4.28 6.85 6.68 5.78

PfPR2−10 (75%+) × Post 0.633∗∗∗ 0.974∗∗∗ 0.473∗∗∗ -0.172

(0.098) (0.122) (0.096) (0.181)

Observations 1,096,274 856,753 674,743 607,976

Notes: This table reports the estimation restuls from OLS regression (7). Brackets contain standard errors clustered

at the region level. PfPR2−10 (75%+) × Post indicates the interaction between the indicator of high-prevalence

regions (PfPR in 2001 exceeding 0.75) and the post-treatment indicator. Samples are restricted to the individuals

who were born and residing (surveyed) in the same region in 2012. Control variables included are age and

urban-rural residential status. All columns include region fixed effects. Full table containing the estimates for

other prevalence groups can be found in Table B2. ∗, ∗∗, and ∗∗∗ indicate significance at the 10, 5, 1% levels.

The magnitude of the effects is in line with the existing literature’s estimates. Lucas (2010)

estimate that malaria eradication increased female educational attainment by as much as two

years in the most heavily infected region, using Sri Lanka’s national malaria eradication cam-

paign in 1945. Bleakley (2010) examine historical episodes of malaria eradication in six Latin

American countries and estimate positive effects on children’s educational attainment in many

countries. More recently, Kuecken et al. (2021) estimate 0.4 years increase in educational

attainment among children who were exposed to the RBM campaign.10

3.4.2. Child quantity: RBM’s effects on mortality and fertility

Figure A.3 and A.4 plot the predicted values of the outcome variables in OLS version of equa-

tion (5) and (6), demonstrating the parallel trends for mortality and fertility conditional on

observable control variables. As seen in the figures, both mortality and fertility rates were

declining in all regions, but we observe a steeper decline in mortality in the high-prevalence

regions upon the launch of the RBM campaign.

Table 2 reports the coefficients from regression (5) and (6). Each cell reports the coefficients

from the Poisson regression, so the interpretation of the coefficient is the expected change in

the log of the mean number of the dependent variable between the high-prevalence regions and

the low-prevalence regions. In other words, being in the high-prevalence regions multiplies

the mean of the dependent variable by a factor of exp(β4). For example, when the depen-

dent variable is the number of children ever born, a negative coefficient β f
4 is interpreted that

women in the high-prevalence regions reduced fertility in response to the RBM campaign.

10For a comprehensive review of the literature, see Currie and Vogl (2013)
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Table 2: Effects of the RBM on Fertility

Gross Fertility Mortality Net Fertility

Dependent variable Children ever born Children ever dead Surviving children

Dependent variable mean in 2012 5.30 0.71 4.57

PfPR2−10 (>75%) × Post –0.0596∗∗∗ –0.107∗∗∗ –0.0255

(0.008) (0.035) (0.017)

Observations 586,836 586,836 586,836

Notes: This table reports the estimation results for the Poisson regression (5) and (6). PfPR2−10 (75%+) × Post

indicates the interaction between the indicator of high-prevalence regions (PfPR in 2001 exceeding 0.75) and

the post-treatment indicator. Samples are restricted to women between age 30 and 49 in 2012, and those who

were born and residing (surveyed) in the same region in 2012. Control variables included are age and years of

schooling of the respondents and urban-rural residential status. All columns include region fixed effects. Full table

containing the estimates for other prevalence groups can be found in Table B3. ∗, ∗∗, and ∗∗∗ indicate significance

at the 10, 5, 1% levels.

Gross Fertility The first column summarizes the results for gross fertility, where the num-

ber of children ever born was used as a dependent variable. The coefficient β f
4 shows that

childbearing-age women in the high-prevalence regions reduced their fertility by 5.96%. The

negative response of fertility is consistent with Kuecken et al. (2021), which also found a re-

duced probability of childbirths in response to the RBM campaign in multiple sub-Saharan

African countries. Within the framework of the quantity-quality tradeoff, the negative fertility

response indicates that the drop in the price of child quality induced by the RBM campaign

was larger than the drop in the price of child quantity.

Child Mortality Although the RBM campaign led the women in the high-prevalence regions

to decrease their fertility, it does not immediately imply that the net fertility rate declined

because the RBM campaign also lowered child mortality. If the reduction in gross fertility

is smaller than the drop in child mortality, net fertility can still increase in response to the

campaign. The second column of Table 2 shows to what extent the RBM campaign reduced

the number of deaths among children in the high-prevalence regions. The coefficient βm
4 shows

the RBM campaign reduced the number of child deaths per woman by 10.7%, indicating that

the RBM campaign was indeed effective for reducing child mortality.11

11The results are consistent with Wilde et al. (2019) and Kuecken et al. (2021), which studied the effects of the
RBM campaign on child mortality as well and found that the campaign reduced all-cause child mortality.
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Net Fertility Combining the results from the gross fertility and child mortality regressions

together, the last column shows the effects of the RBM campaign on net fertility. Instead of the

number of children ever born, the number of surviving children was used as the dependent

variable, which accounts for the immature deaths of children. Although the coefficient is neg-

ative, it is not statistically significant, indicating that although the RBM campaign induced the

women have fewer children, it did not reduce the number of surviving children, at least after

the ten years since the campaign started.

One interpretation for the muted response of net fertility is that the RBM campaign did not

change the number of overall births women intended to have. In this interpretation, women

reduced their fertility in response to the lowered mortality so that the number of surviving

children remained the same. This interpretation can also explain the increase in children’s

educational attainment since having fewer children would have allowed parents to increase

educational input in each child.

Another interpretation is a possibility that the RBM induced women to delay their fertility.

Although possible, such an interpretation is not likely to change the conclusion that the net

fertility did not change in response to the RBM campaign. The chance of pregnancy declines

with age, so even if these women are delaying their fertility and planning to have more children

at older ages, it is unlikely that it will lead to an increase in net fertility. Therefore, I conclude

that the RBM campaign reduced gross fertility but did not change net fertility, although further

investigation with extended data is needed.

3.4.3. Summary of Empirical Analysis

In summary, the RBM campaign is found to reduced women’s fertility and child mortality by

5.9% and 10.7%, respectively. The campaign did not change the number of surviving chil-

dren, suggesting that women reduced their fertility so that the number of surviving children

remain constant.12 The campaign also increased the years of schooling of the benefited chil-

dren by 0.63 years. In the next section, I use these empirical estimates to discipline the model’s

quantitative mechanism.

12The muted response of net fertility is also consistent with the macroeconomic literature of demographic
transition, which has been arguing that while a decline in child mortality is key for a decline in gross fertility, but
is not sufficient to drive a decline in net fertility (Doepke, 2005).
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4. Model Parameterization and Quantification

Guided by the empirical evidence in the previous section, I discipline the magnitude of the

model’s key mechanism by replicating the RBM campaign within the model and matching

the empirical moments obtained in the previous section. The empirical analysis suggests that

the reduction in malaria burden from the RBM campaign has induced the parents to increase

educational investment to their children by sending them more to school, but the parents

adjusted the fertility so that the net fertility does not change. I use these two moments which

summarizes the effects of malaria on fertility behavior and children’s human capital: the muted

response of net fertility in (6) and increased educational attainment of children (β e
4) in (7).

To ensure the model is credible in other dimensions, I jointly estimate parameters to match

the empirical elasticities and other relevant aggregate moments of the Tanzanian economy,

such as educational attainment and intergenerational mobility measures. These moments are

calculated from the microdata when possible, or taken from the existing literature otherwise.

4.1. Exogenously chosen parameters

A small set of parameters are chosen exogenously. Such parameters are summarized in Table

3. The exogenously chosen parameters can be classified into two broad categories. The first

one is a set of parameters that are standard in the macroeconomics literature. Others are the

parameters related to malaria, which are taken from epidemiological/health studies.

Standard Parameters The first panel of Table 3 shows the standard parameter values. The

discount factor is chosen to be 0.966, consistent with the typical values in the literature, ad-

justed for the fact that the model period corresponds to six years. The exogenous gross interest

rate is set to be 2 percent per year, representing the low financial access and low savings rate

among households in low-income economies (Donovan, 2021).

It is worth mentioning the role of parameter γ, whose interpretation is the inverse of the inter-

generational elasticity of substitution. This parameter is commonly interpreted as intertempo-

ral elasticity of substitution in the macroeconomics literature, which governs the consumption

tradeoffs between today’s and tomorrow’s consumption. In the life-cycle model with inter-

generational linkage, γ also governs the degree of intergenerational elasticity of substitution

because this parameter also affects how parents weigh their children’s utility to their own util-

ity. For instance, higher γmeans that parents’ marginal utility of consumption decreases faster

as they become richer, which makes children relatively more valuable. I set the value of γ to

0.5, following Daruich and Kozlowski (2020). The fact that γ is less than one also ensures the
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Table 3: Exogenously Chosen Parameters

Var Description Value Source / Target

Economic Parameters

β Discount factor 0.966 Standard value

r Exogenous gross interest rate 1.026 Deposit interest rate

γ Inverse of IES 0.5 Daruich and Kozlowski (2020)

ω2 Curvature of the time cost function 0.68 Folbre (2008)

N̄ Maximum number of children 6 Tanzania Census 2002

λ Elasticity of substitution between skill groups 4.0 Bils et al. (2022)

Epidemiological Parameters

χd
U Mortality rate, child from uneducated parents 0.109 Ogbo et al. (2019)

χd
P Mortality rate, child from primary-educated parents 0.109 Ogbo et al. (2019)

χd
S Mortality rate, child from secondary-educated parents 0.078 Ogbo et al. (2019)

χm
U Prob. catching malaria, child from uneducated parents 0.79 Gonçalves et al. (2014)

χm
P Prob. catching malaria, child from primary-educated parents 0.79 Gonçalves et al. (2014)

χm
S Prob. catching malaria, child from secondary-educated parents 0.56 Gonçalves et al. (2014)

utility is positive everywhere. That is, parents always "enjoy" having children, and the implicit

value of being childless or having a child die is zero.13

Fertility and Childcare Cost The maximum number of children parents can choose in the

model is capped at N̄ = 6. Since a parent in the model corresponds to a household of two

parents, a parent choosing n= N̄ corresponds to a household having 12 children in reality. I

choose N̄ = 6 because according to the Tanzania Census in 2002, 95% of the households have

less than 12 children. The time cost function, t(n) =ω1nω2 , is an increasing and concave

in the number of children. Typically, the literature estimates both the level and curvature

parameters using the time-use data14. Unfortunately, detailed time-use data is not available

in most low-income countries, and Tanzania is not an exception. Absent the available data, I

follow the literature and set the value of the curvature parameter, ω2 at 0.68, based on Table

6.4 in Folbre (2008).

13When the utility is allowed to be negative, we need extra assumptions on the value of being childless and
having children die. See Jones and Schoonbroodt (2010) for discussion on this matter.

14See Lee and Seshadri (2019); Daruich and Kozlowski (2020), and Yum (2022) for the estimates of ω2 from
the US time use data.
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Malaria Parameters related to child mortality and malaria are taken directly from epidemio-

logical studies of malaria in the Sub-saharan Africa context. Two sets of parameters are needed:

mortality (probabilities of deaths) and morbidity (probability of being sick from malaria). The

mortality parameter, χd
s , corresponds to the under-age five mortality rate. I take this parameter

from Figure 1 of Ogbo et al. (2019), which estimated the under-5 mortality rate in Tanzania

between 2004 and 2016 using the Demographic and Health Survey. I use the estimates from

the 2004-2005 DHS wave, which is the closest to the pre-RBM periods. Ogbo et al. (2019) also

reports that children under five years whose mothers had primary or no education were 38%

more likely to die before their fifth birthday compared to those whose mothers had a secondary

or higher level of education (Table 2). Following their estimates, I set the mortality rate of chil-

dren born from secondary-educated parents to be 38% lower than its lower-educated parents

counterparts.

The parameter χd
s encompasses the probability of dying from all causes, including causes other

than malaria. To calculate the fraction of the mortality rate attributed to malaria, I use the four

waves of the Tanzania National Panel Survey (2008, 2010, 2012, and 2014) to calculate the

fraction of malaria-caused deaths among all deaths. The survey asks the diagnosed cause of

death for all deaths within the households, and malaria consistently accounts for about 51%

of childhood deaths15. However, this number is likely to be an upper bound since only 5.9% of

all deaths are identified, meaning that a lot of parents did not know which disease caused their

child’s death. If malaria is relatively easier to identify as a cause of death, then such a high

fraction might be an overestimation. Instead, the Institute for Health Metrics and Evaluation

(IHME) reports that about 17% of under-5 deaths were attributable to malaria in 2002 in

Tanzania. I take the average of the two numbers and assume that 35% of all under-5 deaths

are caused by malaria.

Parameters for morbidity probabilities, χm
d , are taken from epidemiological studies in Tanzania.

From a study conducted between 2002 and 2005 among children in areas with intense malaria

transmission in Tanzania, Gonçalves et al. (2014) concludes that the unconditional probability

of experiencing malaria (either mild or severe) is 79%. Following this, I set 79.0% as the

baseline probability of being hit by a morbidity shock in the model. I adjust the probability to

56% for children born from secondary-educated parents, as I did for mortality.

4.2. The RBM Campaign within the Context of the Model

I use the causal effects of the RBM campaign on fertility and children’s educational attainment

estimated in Section 3 to discipline the model’s implied elasticities. To do so, I simulate the

15Exact numbers, along with the numbers for other causes of deaths, are reported in Table B4.

25



RBM campaign within the model and compare the model-generated moments to the estimated

data moments. In this subsection, I describe how I interpret the RBM campaign from the

perspective of the model and the procedure of the simulated method of moments.

I calibrate the baseline economy before the RBM campaign to the high-prevalence regions.

When the region-specific parameters of moments are not available due to the data availability,

I use the country-wide counterparts.16 I then feed the RBM campaign to the model as an

unexpected, universal reduction in the probability of negative health shocks. Compared to

the pre-campaign periods, the malaria prevalence level was reduced by 70% (Figure A.2).

Guided by this fact, I lower the morbidity probability χm
s and the malaria-attributed part of the

mortality probability χd
s by 70% for all schooling groups s. Since the RBM was a nationwide

campaign, all households in the model face the same reduction in malaria risk.

I also assure that the households in the economy do not expect a reduction in malaria risk and

behave in anticipation. This approach prevents behaviors like accumulating assets in advance

to increase educational investment when the campaign starts. To do so, I first simulate the

balanced growth path of the economy with the pre-RBM level of malaria risks and then reduce

the malaria risk unexpectedly. Households then adjust their fertility and education decisions

according to the new decision rules under the changed disease environment. The simulated

moments and their data counterparts are summarized in the last panel of Table 4, and the

estimated parameter values are summarized in Table 5.

4.3. Parameters Estimated from the RBM Campaign

Aside from the exogenously calibrated parameters, the remaining 12 parameters of the model

are calibrated to match the 14 moments, either from the RBM campaign or from the aggregate

data. The two main outcomes of the RBM campaign are its treatment effects on fertility and

children’s education, measured by the number of children and years of schooling. Although

all moments in the model are jointly determined, the parameter m, which represents the neg-

ative effects of morbidity shock on returns from education, is most closely related to the two

moments. The lower the m is, the more detrimental malaria is for a child’s human capital for-

mation. Hence, reducing the probability of malaria will have greater effects with lower m. The

estimated value of m is 0.76, suggesting that children with malaria receive 24% lower returns

from schooling. This is broadly consistent with the epidemiological literature on malaria’s ef-

fects on children’s cognitive ability and school performance. For instance, in a study carried

out in Sri Lanka, Fernando et al. (2003) find that children who experienced less than three

16The high-prevalence regions are relatively poorer than the rest of Tanzania and have smaller family sizes.
However, the relationship between fertility, income, and parental investment is similar to the rest of the country.
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attacks of malaria scored at least 15% more in both the special and school examinations than

children who experienced more than five attacks of malaria during the same period. In another

study that took place in Yemen, Al Serouri et al. (2000) conclude that having at least one attack

of malaria was significantly associated with poor (below the 50th percentile for class/grade)

school performance.

Table 4: Targeted Moments

Moments Source Data Model

Education

Primary completion rate (%) Tanzania Census 2012 45.6 44.8

Secondary completion rate (%) Tanzania Census 2012 11.5 10.3

Primary ed. wage premium (%) Leyaro et al. (2014) 59.9 59.4

Secondary ed. wage premium (%) Leyaro et al. (2014) 115.2 121.8

Intergenerational Mobility

Uneducated-Primary intergenerational upward mobility Alesina et al. (2021) 46.9 39.9

Uneducated-Secondary intergenerational upward mobility Alesina et al. (2021) 4.7 3.3

Primary-Secondary intergenerational upward mobility Alesina et al. (2021) 14.0 15.8

Differential Fertility

Total fertility rate, uneducated parents Tanzania Census 2012 5.00 4.94

Total fertility rate, primary completed parents Tanzania Census 2012 4.67 4.56

Total fertility rate, secondary completed parents Tanzania Census 2012 3.40 3.88

% of secondary-educated parents with 6+ children Tanzania Census 2012 23.35 22.76

Inequality

Gini coefficient Younger et al. (2016) 0.38 0.42

Roll Back Malaria

Treatment effect of the RBM on schooling (years) Section 3 0.63 0.66

Treatment effect of the RBM on net fertility (%) Section 3 0.00 0.01

4.4. Parameters Estimated from Aggregate Data

The remaining parameters jointly determine the targeted moments from aggregate data, as

well as the moments from the RBM campaign. Primary and secondary school completion rates

are calculated from the 2012 Census among adults younger than 30 years old. The low com-

pletion rates for both primary and secondary schools inform that child labor is quite prevalent.

The two schooling fee parameters, pP and pS, pin down these two moments. The estimated

parameter value of the primary school fee parameter pP is −0.36. The negative sign of this
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parameter suggests it is unlikely that the credit constraints are preventing the parents from

sending their children to primary school because a negative pP means parents receive money

by sending kids to school. Instead, it means that child labor is an attractive alternative to edu-

cating children. On the other hand, the schooling fee for the secondary school, pS, is positive

at 1.18, implying a monetary cost of sending children to secondary school.

Table 5: Parameters and Estimated Values

Parameter Value Description

ηP 1.33 Human capital gain from primary education

ηS 1.64 Human capital gain from secondary education

pP -0.36 Goods cost of primary education

pS 1.18 Goods cost of secondary education

σv 0.16 Standard deviation of idiosyncratic income shock

σz 0.16 Standard deviation of the learning ability draw

ρz 0.92 Intergenerational persistence of learning ability

θ 0.39 Gumbel scale parameter of the fertility taste shock

ω1 0.17 Level of time cost of childcare

δ 0.75 Level of intergenerational altruism

λn 0.72 Curvature of the altruism function

m 0.76 Severity of malaria morbidity shock

The earnings premiums that primary- and secondary-educated workers enjoy (relative to the

uneducated group), are taken from Table 3 of Leyaro et al. (2014), which estimated the educa-

tion premiums with two the 2001/2006 Tanzania Integrated Labour Force Survey.17 The two

parameters related to these moments are ηP and ηS, which governs how much human capital

grows from attending primary and secondary school, respectively. The estimated parameters

are 1.33 and 1.64. Along with the low secondary school completion rate, the large ηS shape

the sizable earnings premium the secondary-educated workers enjoy.

There are two parameters that govern intergenerational mobility in the model. The first is the

AR(1) persistence parameters of the learning ability draw, ρz, and the other is the variance of

the shock in the AR(1) process, σz. Intuitively, a high level of persistence would reduce inter-

17There are multiple sources for wage premium, all reporting similar estimates. Leyaro et al. (2014) use both
IFS and the urban worker sample. Joseph (2020) used the Integrated Labor Force Survey, using primary educated
workers as a reference group. Mlacha and Ndanshau (2018) also use the integrated labor force survey and get
similar estimates.
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generational mobility, while a high level of variance of the shock increases intergenerational

mobility by making the learning ability more random. Given this intuition, I target three mea-

sures of intergenerational upward mobility, estimated in Alesina et al. (2021). Each moment

represents the likelihood that children born to parents that have a certain level of education

manage to attain a higher level of education. In the model, these moments are constructed

from parent-children pairs from the balanced growth path of the model.

Several parameters jointly affect the fertility behaviors in the model. First, there are two pa-

rameters in the intergenerational discount function, b(n) = δnλn , which govern the level of

intergenerational altruism and its curvature to the number of children. These parameters are

closely related to fertility decisions, although they also affect education decisions through in-

tergenerational altruism. The estimated parameter values for δ, and λn are 0.75 and 0.72,

matching the overall fertility rate. Another parameter that governs fertility behavior is ω1,

which represents the time cost of child-rearing. If the time cost is high, then high-skilled par-

ents would be more reluctant to have children, generating a stronger negative relationship

between income and fertility. I hence use ω1 to match the differential fertility across the three

skill groups. The estimated value of ω1 is 0.17, and the fertility declines with the parental

school level. Lastly, I use the Gumbel scale parameter of the fertility taste shock θ to match

the distribution of fertility at the tail.

The remaining parameterσv governs the standard deviation of the idiosyncratic shock to adult

human capital. Given that this is also related to the variance of adult income, I discipline this

parameter by matching the Gini coefficient in the year 2010, measured in Younger et al. (2016)

using the Tanzania Household Budget Survey.

5. Long-Run General Equilibrium Effects of Malaria Vaccine

Using the estimated model, I simulate the long-run effects of a nationwide distribution of a

successful malaria vaccine. A recent epidemiological study reports that the new malaria vaccine

is up to 80% effective at preventing the disease in young children. Through the lens of the

model, this is interpreted as an 80% reduction in malaria mortality (χd
s ) and morbidity shock

probability (χm
s ). Since malaria accounts for 35% of all under five mortality in the model, the

resulting reduction in mortality rate is sizable. To see the long-run effects, I simulate the new

balanced growth path of the economy with the reduced malaria parameters and compare the

aggregate moments between the pre-and post-vaccine balanced growth paths.
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5.1. Quantitative Results

Table 6 summarizes the long-run, general equilibrium effects of a nationwide distribution of a

successful malaria vaccine. The primary school completion rate increases significantly, from 45

percent in the pre-vaccine balanced growth path to almost 60 percent in the post-vaccine bal-

anced growth path. The increase in the secondary school completion rate is relatively smaller.

The smaller increase in secondary completion rate stems from the higher returns from child

labor from secondary education-aged children. The higher school completion rates mean that

the parents on the post-vaccine balanced growth path possess higher human capital. As a re-

sult, the negative income-fertility relationship becomes stronger. As seen in the second panel,

fertility (the number of children ever born) falls in all skill groups. What is notable here is

that despite the falls in gross fertility, the population growth rate increases in the post-vaccine

balanced growth path, although the change is modest. The higher population growth implies

that the decline in gross fertility rates is insufficient to compensate for the drop in mortality

rate, as argued in Acemoglu and Johnson (2007).

The second panel of Table 6 demonstrates the changes in the skilled and unskilled wages and

the increase in GDP per capita. GDP per capita increases significantly, up to 34% in the long

run. Given that the population growth rate is also higher in the post-vaccine balanced growth

path, such a high increase in GDP per capita suggests that the increase in aggregate production

is more than enough to compensate for the larger population size. In the next subsection, I

conduct several decomposition exercises to break down the sources of the GDP per capita gain.

Lastly, the relative wage of unskilled workers rises by 4.4 percent while the skilled wage falls

by 8.8 percent, reflecting the larger supply of skilled workers in the post-vaccine world.18

The last panel of Table 6 reports the changes in intergenerational upward mobility in terms of

educational attainment. The fraction of children born to uneducated parents who manage to

receive primary education increases by 12 percentage points. Upward mobility measures for

higher education levels also increase, but with smaller magnitudes. The model implies that the

improvement in intergenerational upward mobility is larger in households with less educated

parents, even though the vaccine was universally distributed. Mass vaccination is pro-poor

because when a child has malaria, unskilled parents are less likely to send the child to schools

than skilled parents. Figure 3 illustrates the probability that a healthy (no malaria shock) and

an unhealthy (malaria shock) attend primary school, depending on their parent’s education

level, after controlling for the number of children within the household. Two patterns are

observed here. First, in all three groups of education level, parents are more likely to send their

18The rise in unskilled wage and fall in skilled wage is consistent with Khanna (Forthcoming), who finds a large
decline in the relative wages of skilled workers following an expansion in schooling in India.
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Table 6: Long-Run General Equilibrium Effects of National Malaria Vaccine Policy

Pre-Vaccine Post-Vaccine Change from

BGP BGP Pre-Vaccine BGP

Education

Primary completion rate (%) 44.8 58.3 + 12.4 p.p.

Secondary completion rate (%) 10.3 14.4 + 4.1 p.p.

Output per Capita and Prices

Unskilled wage + 4.5%

Skilled wage − 8.9%

Output per capita + 34.3%

Fertility

Total fertility rate, uneducated parents 4.94 4.91 − 0.7%

Total fertility rate, primary completed parents 4.56 4.49 − 1.7%

Total fertility rate, secondary completed parents 3.88 3.77 − 2.8%

Population growth rate (%) 3.13 3.15 + 2.0p.p.

Intergenerational Mobility

Uneducated-Primary intergenerational upward mobility 39.9 51.6 + 13.5 p.p.

Uneducated-Secondary intergenerational upward mobility 3.3 4.9 + 1.6 p.p.

Primary-Secondary intergenerational upward mobility 15.8 18.1 + 2.3 p.p.

Notes: This table reports the long-run, general equilibrium effects of nationwide malaria vaccination. The efficacy

of the vaccine is assumed to be 80%.

children to school. In other words, parents tend to reinforce the adverse effects of the malaria

shock on their child’s human capital by not sending them to school. The second pattern is the

heterogeneity of the reinforcing behaviors across different groups of education levels. Although

parents from all educational backgrounds are less likely to send their children to school when

they are sick, it is more so for the less educated parents. In other words, more educated

parents are likely to compensate for the negative effects of malaria on children’s human capital

by sending them to school more, compared to the less educated parents.19 As a consequence,

the model predicts that vaccination is pro-poor by benefiting the children from less educated

parents more.

19The terms "reinforce" and "compensate" are commonly used in the literature, but more commonly in a context
of intra-household allocation of resources between children with different abilities or health conditions.
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Figure 3: Child’s Probability of Attending Primary School
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Notes: This figure illustrates the likelihood that children born to parents with different levels of educa-

tional attainment complete primary schooling, depending on their health status at age six on the pre-

vaccination balanced growth path. I simulated 50,000 parent-children pairs from the balanced growth

path distribution and ran probit regression where the dependent variable is a binary variable of whether

a parent sends children to primary school. Control variables include the idiosyncratic productivity shock,

the number of children within the household, and children’s learning abilities. Regression coefficients

are plotted with 95% confidence intervals.

5.2. Sources of the Long Run Gains

The 34% increase in long-run GDP per capita is much larger than what previous literature has

found. In this subsection, I formally compare this number to the numbers found in the previous

literature and investigate the sources of the model’s predicted large increase in per capita GDP.

5.2.1. Comparison to Acemoglu and Johnson (2007)

Acemoglu and Johnson (2007) examined the effect of longer life expectancy on economic

growth by exploiting large the improvements in life expectancy driven by international health

interventions in the 1940s, namely the international epidemiological transition. They found

that a 1% improvement in life expectancy leads to a 1.7–2% increase in population but found
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no evidence of growth in per capita income following a substantial increase in life expectancy.

They even found relative decline in GDP per capita in countries that experienced large increases

in life expectancy, suggesting that longer life expectancy contributes to population growth

rather than improvement in economic growth.

The small or even negative changes in per capita output in Acemoglu and Johnson (2007)

are seemingly contradictory to the model’s large long-run increase in per capita output. How-

ever, their findings are perfectly consistent with the model’s predictions once we interpret the

international epidemiological transition through the lens of the model. Generally speaking,

the model says whether eradicating diseases can decrease the long-run net fertility depends

on if the eradication increases the children’s human capital. In this sense, if the international

epidemiological transition only lengthened the life expectancy and did not facilitate children’s

human capital accumulation, then simulating the transition within the model would generate

the similar results as in Acemoglu and Johnson (2007).20

Table 7: Decompositon of the Long-Run Effects

Lower Both Lower Mortality Lower Morbidity

Population Growth Rate (%) 3.15 3.26 3.02

Primary Completion Rate (%) 58.3 46.0 58.5

Secondary Completion Rate (%) 14.4 11.0 14.7

∆ Per capita GDP + 34.3% + 1.6% + 31.7%

Notes: This table shows the long-run changes in educational attainment and per-capita output when

mortality and/or morbidity are lowered. The second column contains the results from a simulation with

an 80% reduction in malaria mortality (χd
s ) while the morbidity shock probability (χm

s ) is unchanged.

The third column contains the results from a simulation with no change in malaria mortality while the

morbidity shock probability is reduced by 80%. The first column is the baseline long-run simulation,

where both mortality and morbidity probabilities are lowered.

To confirm this idea, I simulate a counterfactual long-run balanced growth path where I only

lower either the mortality or morbidity to the post-vaccine level while keeping the other dimen-

sion of the disease at the pre-vaccine level. Table 7 contains the results from this counterfactual

exercise. Although this is not the perfect way to replicate the epidemiological transition within

the model, it is an informative exercise to check whether the model can nest the empirical ob-

20There are several reasons to believe that the epidemiological transition did little in increasing children’s
human capital. The most obvious observation is that schooling was not universal back in the 1940s, and many
children were not able to take advantage of better health conditions by attending schools. Child labor was also
more prevalent due to the lack of legal restrictions against it.

33



servations in the previous literature. The second column is the closest to the long-run effects

of the epidemiological transition; fewer children die, but their returns from schooling are still

low because morbidity shock is unchanged. The per capita output gain shrinks to a mere 1.6

percent. Moreover, the increase in primary school completion rate becomes very modest, com-

pared to 45% in the pre-vaccine balanced growth path. Most importantly, a large increase in

population growth rate (+ 0.13 p.p.compared to the benchmark post-vaccine balanced growth

path) suggests that any individual-level income gains are dwarfed by the larger population

size, resulting in a negative per capita income gain.

The key for a public health intervention to have a growth impact is whether it can facilitate

education. Overall, the calibrated model suggests that even a significant reduction in mortality

is not enough to generate a transformative increase in education when it’s not accompanied

by a reduction in morbidity. A key takeaway here is that uni-dimensional, mortality-focused

modeling of disease could lead to biased results when calculating the economic effects.

5.2.2. Comparison to Ashraf, Lester, and Weil (2008)

Ashraf et al. (2008) simulate the effects of eradicating malaria using a standard neoclassical

framework. In their framework, eradicating malaria raises life expectancy and years of school-

ing. Hence, they considered both the mortality and morbidity aspects of malaria. Nevertheless,

they conclude that the effect of eradicating malaria in a typical sub-Saharan African country

would be to raise GDP per capita by only about 2% in the long run.

There are two main differences between the simulation in this paper and that of Ashraf et al.

(2008). The first one is the channels through which disease eradication (or reduction of dis-

ease prevalence in the current context) affects the human capital. Both assume that schooling

increases human capital, but Ashraf et al. (2008) assume that eradicating malaria increases

human capital only through increased years of schooling. This approach does not capture the

channels other than years of schooling through which malaria eradication increase children’s

human capital, such as better learning in school due to higher cognitive ability, or better phys-

ical human capital.21 The measurement of human capital in the model capture overcomes

this weakness because, in the model, the malaria vaccine increases human capital not only

through more schooling (more children sent to primary and secondary school) but also through

improved learning in school.

21Bleakley (2010), for example, uses the malaria eradication in six Latin American countries circa 1955 as a
natural experiment and studies how much adulthood earnings increased for the children who were born after the
eradication. The study finds that 100% eradication of malarial infections in those countries increased subsequent
adult income by >40%, and an increase in years of schooling only accounts for 25% of the earnings increase.
This suggests that malaria eradication might have partially affected people’s income through channels other than
years of schooling.
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The second difference of Ashraf et al. (2008) from the quantitative exercise of this paper is the

lack of intergenerational dynamics. Ashraf et al. (2008) treat malaria eradication as a one-time

increase in human capital, which does not affect future generations. However, it is debatable

that eradicating malaria only affects one generation, without inducing the subsequent gener-

ations to change their education decisions for their children. If the children who benefited

from eradication further increase educational investment for their own children, the increase

in per capita output will be even larger in the long run. The overlapping generational structure

and the intergenerational linkage embedded in the model allow us to capture this channel and

investigate its quantitative importance.

Table 8: Decomposition of the Short-Run Effects of the Vaccination

Benchmark Model Exogenous Fertility Exogenous Schooling

Children born right after the vaccination

Primary completion rate (%) 55.2 55.1 44.8

Secondary completion rate (%) 11.0 10.9 9.4

Earnings at age 18 vs. parents + 18.0% + 17.6% + 12.8%

Notes: This table shows the short-run, one-generational effects of the malaria vaccine on children’s educational

attainment and earnings in the first period of adulthood. The numbers in the second column are calculated from

a simulation where I do not allow parents to make endogenous fertility choices and assign the number of children

that corresponds to the pre-vaccine balanced growth path. Parents still make education investments choice in this

case. For the numbers in the third column, I do not allow parents to change their educational investment choice

in response to the vaccination while letting them make fertility choices.

To understand the quantitative implications of the two departures mentioned above, I calculate

the short-run effects of the malaria vaccine from two alternative scenarios where parents are

not adjusting fertility or schooling decisions. Specifically, in each scenario, I do not allow the

parents to have fewer children (exogenous fertility) or send children to school more (exogenous

schooling). The second and third columns of Table 8 summarize the results of this exercise.

First, comparing the benchmark model where both fertility and schooling decisions are en-

dogenous (column 1) manifests the importance of the amplifying effects of the intergenera-

tional linkage. Comparing the 18% short-run partial equilibrium increase in per capita output

with 34% of the long-run general-equilibrium counterpart reveals that the long-run general

equilibrium effects are about 1.9 times larger. This implies that ignoring the intergenerational

compounding effects could potentially underestimate the long-run gains by almost 50%.

Second, comparing the benchmark simulation (column 1) and the exogenous schooling sce-
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nario (column 3) uncovers the quantitative importance of using years of schooling as the sole

measure of human capital. The model predicts that even if we did not observe any increase

in years of schooling among the children who receive the vaccines, their earnings in adult-

hood would have increased by 12.8 percent. In other words, an increase in years of schooling

only accounts for 29% of the total increase in human capital. This is consistent with Bleakley

(2010), who found that cohorts born after malaria eradication had higher adult income in six

American countries. Of all six countries, years of schooling accounted for only less than a quar-

ter of the effect of income. The model implies that measuring human capital through years of

schooling would significantly underestimate the effects of malaria on human capital.

Combined together, we can do a back-of-the-envelope calculation of how much the long-run

gains in output per capita will be reduced when we mimic the analysis in Ashraf et al. (2008).

Since years of schooling accounts for only 29% of the human capital gain and intergenerational

channel amplifies the short-run effects by 1.75 times, the long-run increase in per capita output

in this scenario would be 34×0.29×(1/1.9)≈ 5.2 percent. This number is much closer to the

2 percent long-run gain that Ashraf et al. (2008) found.

5.3. Policy Counterfactual: Vaccine Efficacy and the Cost of Vaccination

Although the increase in output per capita is large in the long run, producing and administering

vaccines to the mass population can be quite costly. For instance, Sicuri et al. (2019) estimate

the per-child cost of administering malaria vaccine to range from $25 to $37 in a typical sub-

Saharan African country, including all associated costs and assuming a vaccine price of $5 per

dose.22 Moreover, the vaccine’s efficacy might turn out to be lower than the current 80%, and

if so, the costs of vaccinating people might exceed the benefits.

To see whether the long-run benefits are large enough to compensate for the costs of the vac-

cination policy, I solve the post-vaccine balanced growth path with a lower level of efficacy

and compare the per-capita output gain to the cost of per-child vaccination. I take a conser-

vative stance on the cost of vaccination and assume that per-child cost is $50, which roughly

corresponds to a vaccine price of $10 per dose. Figure 4 shows the cost-benefit comparison

of various efficacy scenarios. The vertical line at the 75% efficacy level represents the WHO-

specified efficacy threshold for funding. The horizontal line indicates the $50 per-child cost of

vaccination as a fraction of GDP per capita, using the GDP per capita in 2005 as a reference.

As seen in the figure, the long-run increase in output per capita clearly dominates the cost of

vaccination, even though the costs used were conservatively high. Considering that the long-

22According to Datoo et al. (2022), four doses (three initial doses and a booster dose one year later) are needed
to fully vaccinate one child.
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run gains are about twice as large as the gains for the first generation who would receive the

vaccines, the results imply that any vaccines with at least 40% efficacy would be cost-efficient,

which is far below the WHO-specified efficacy level for financial support.

Figure 4: Vaccine Efficacy and the Cost of Vaccination
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Note: Y-axis is the long-run percentage change in per-capita output between the pre-and post-vaccination

balanced growth paths. Orange dot at the 80% efficacy denotes the reported efficacy of the current

vaccine.

6. Conclusion

High mortality and poor health conditions have been widely thought of as major development

obstacles by policymakers in the developing world. Yet the macroeconomics literature thus

far has found only small growth effects of health improvement. Using a quantitative dynamic

macroeconomic model informed by reduced-form empirical evidence, this paper analyzes the

long-run macroeconomic impacts of eliminating malaria, one of the deadliest diseases with a

long-lasting cognitive damage for children in sub-Saharan Africa. In contrast to the previous

literature, this paper argues that eliminating malaria in a typical sub-Saharan African country

would generate large increases in output per capita, almost ten times as large as previously
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estimated. Through the lens of the model, eliminating malaria cause parents and children

to undertake higher investments in human capital, which drives substantial increase in living

standards in the long run.

Developing countries, especially sub-Saharan African countries under the current context, are

characterized by low fiscal and state capacity. While the vaccine will undoubtedly save many

lives, whether the distribution of vaccines should be prioritized over other imperative devel-

opment objectives depends on the size of economic benefits it generates. The results in this

paper support prioritizing removing malaria as a core development objective. Moreover, since

the long-run gains are materialized through the better education of healthier children, elim-

inating malaria can be complementary to policies aiming to improve the education system.

Aside from the policy relevance, this paper also suggests that children’s poor health conditions

are one of the main reasons income per capita remains low in the developing world.

The model has several simplifying assumptions. Most prominent is perhaps the absence of

physical capital. Improvements in health conditions may lead to a higher stock of physical

capital since healthier workers can save more and increase the capital’s marginal product. In

this sense, including physical capital might further increase the long-run gains. However, it

is not straightforward to expect that the physical capital would amplify the long-run gains

because financial frictions might dampen the accumulation of capital, especially in developing

countries where disease eradication is most needed (Banerjee and Duflo, 2005). Considering

other channels, including the physical capital, through which health improvement affects long-

run growth remains a topic for future research.
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Appendix

A. Appendix Figures

Figure A.1: Change in regional malaria risk conditional on malaria risk in 2001
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Malaria Atlas Project (MAP). Fitted line is calculated by regressing the changes in malaria risk over 2001

and 2012 on initial malaria risk in 2001.
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Figure A.2: Time trend of malaria risk of the four pre-campaign malaria prevalence categories
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Notes: Each point represents a within-category population-weighted mean of PfPR. Regional

malaria prevalence data obtained from the Malatia Atlas Project (MAP).
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Figure A.3: Parallel trend in child mortality
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Notes: This figure illustrates the parallel trend between the high- and low- prevalence regions

by plotting the mean of the number of children ever dead conditional on the covariates used

in regression (5). Three waves of the Tanzania National Census (1988, 2002, 2012) are used.

Samples are restricted to women between the ages 30 and 49 in 2012 and those who were

born and residing (surveyed) in the same region in 2012. Control variables included are the

respondents’ age and years of schooling and urban-rural residential status. Standard errors are

clustered at the region level. 95% confidence intervals are plotted. The vertical dashed line

indicates the timing of the RBM campaign.
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Figure A.4: Parallel trend in fertility

4
4.

5
5

5.
5

6
Pr

ed
ic

te
d 

nu
m

be
r o

f c
hi

ld
re

n 
ev

er
 b

or
n

1988 2002 2012
Year

Low prevalence High prevalence

Notes: This figure illustrates the parallel trend between the high- and low- prevalence regions

by plotting the mean of the number of children ever born conditional on the covariates used

in regression (6). Three waves of the Tanzania National Census (1988, 2002, 2012) are used.

Samples are restricted to women between the ages 30 and 49 in 2012 and those who were

born and residing (surveyed) in the same region in 2012. Control variables included are the

respondents’ age and years of schooling and urban-rural residential status. Standard errors are

clustered at the region level. 95% confidence intervals are plotted. The vertical dashed line

indicates the timing of the RBM campaign.
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Figure A.5: Parallel trend in children’s years of schooling, children aged 10-15 in 2012
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Notes: These figures illustrate the parallel trend between the high- and low- prevalence regions

by plotting the mean of the number of years of schooling conditional on the covariates used

in regression (7). Three waves of the Tanzania National Census (1988, 2002, 2012) are used.

Samples are restricted to women between the ages 30 and 49 in 2012 and those who were

born and residing (surveyed) in the same region in 2012. Control variables included are the

respondents’ age and urban-rural residential status. Standard errors are clustered at the region

level. 95% confidence intervals are plotted. The vertical dashed line indicates the timing of the

RBM campaign.
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Figure A.6: Parallel trend in children’s years of schooling, children aged 15-20 in 2012
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Notes: These figures illustrate the parallel trend between the high- and low- prevalence regions

by plotting the mean of the number of years of schooling conditional on the covariates used

in regression (7). Three waves of the Tanzania National Census (1988, 2002, 2012) are used.

Samples are restricted to women between the ages 30 and 49 in 2012 and those who were

born and residing (surveyed) in the same region in 2012. Control variables included are the

respondents’ age and urban-rural residential status. Standard errors are clustered at the region

level. 95% confidence intervals are plotted. The vertical dashed line indicates the timing of the

RBM campaign.
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B. Appendix Tables

Table B1: Descriptive Statistics

Entire Sample Low Prevalence High Prevalence

Regions Regions

Age 37.48 37.55 37.81

(5.624) (5.621) (5.666)

Number of children ever born 5.751 5.622 4.855

(3.018) (2.887) (2.697)

Number of children dead 0.985 0.856 1.204

(1.386) (1.316) (1.550)

Years of schooling 4.407 4.672 3.973

(3.484) (3.420) (3.362)

% Household w/ electricity 0.0695 0.0791 0.0288

(0.254) (0.270) (0.167)

% Household w/ water supply 0.347 0.421 0.185

(0.476) (0.494) (0.388)

PfPR in 2001 0.336 0.135 0.763

(0.194) (0.0510) (0.00664)

Number of families in household 1.365 1.323 1.492

(0.936) (0.866) (1.041)

Labor force participation 0.832 0.855 0.880

(0.374) (0.352) (0.325)

Urban-rural status 0.355 0.340 0.400

(0.479) (0.474) (0.490)

Observations 244,343 76,836 6,209

Notes: Calculated from 2002 Census data. Sample is restricted to women between age 35 and 49. Low-

prevalence corresponds to the regions with PfPR lower than 10% in 2001, while high-prevalence corre-

sponds to the regions with PfPR higher than 75% in 2001. Having water supply is defined as having access

to piped water either within or outside the dwelling, including the public piped water. Mean coefficients;

standard deviation in parentheses
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Table B2: Effects of the RBM on Years of Schooling (Full Table)

Age group in 2012

Age 10-15 Age 15-20 Age 20-25 Age 25-30

Dependent variable mean in 2012 4.28 6.85 6.68 5.78

Post 1.144∗∗∗ 1.431∗∗∗ 1.040∗∗∗ 0.358∗∗∗

(0.041) (0.068) (0.085) (0.079)

PfPR2−10 (20% − 50%) × Post 0.006 0.032 0.012 -0.130

(0.059) (0.088) (0.109) (0.099)

PfPR2−10 (50% − 75%) × Post -0.019 0.140 -0.027 -0.290∗∗

(0.093) (0.122) (0.137) (0.140)

PfPR2−10 (75%+) × Post 0.633∗∗∗ 0.974∗∗∗ 0.473∗∗∗ -0.172

(0.098) (0.122) (0.096) (0.181)

Age 0.711∗∗∗ 0.130∗∗∗ -0.081∗∗∗ -0.075∗∗∗

(0.008) (0.008) (0.004) (0.005)

Urban 0.759∗∗∗ 1.383∗∗∗ 1.566∗∗∗ 1.433∗∗∗

(0.040) (0.068) (0.071) (0.067)

Observations 1,096,274 856,753 674,743 607,976

Notes: This table reports the estimation restuls from OLS regression (7). Brackets contain standard errors clustered

at the region level. PfPR2−10 (75%+) × Post indicates the interaction between the indicator of high-prevalence

regions (PfPR in 2001 exceeding 0.75) and the post-treatment indicator. Other interaction terms are defined

similarily. Samples are restricted to the individuals who were born and residing (surveyed) in the same region in

2012. Variable Urban indicates whether the respondent reside in the urban part within the region. All columns

include region fixed effects. ∗, ∗∗, and ∗∗∗ indicate significance at the 10, 5, 1% levels.
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Table B3: Effects of the RBM on Fertility (Full Table)

Gross Fertility Mortality Net Fertility

Dependent variable Children ever born Children ever dead Surviving children

Dependent variable mean in 2012 5.30 0.71 4.57

Post –0.104∗∗∗ –0.316∗∗∗ –0.073∗∗∗

(0.008) (0.015) (0.009)

PfPR2−10 (20% − 50%) × Post 0.012 0.019 0.016

(0.010) (0.021) (0.011)

PfPR2−10 (50% − 75%) × Post 0.009 0.012 0.017

(0.013) (0.022) (0.013)

PfPR2−10 (>75%) × Post –0.0596∗∗∗ –0.107∗∗∗ –0.0255

(0.008) (0.035) (0.017)

Age 0.026∗∗∗ 0.044∗∗∗ 0.022∗∗∗

(0.000) (0.001) (0.000)

Years of schooling –0.016∗∗∗ –0.057∗∗∗ –0.008∗∗∗

(0.001) (0.002) (0.001)

Urban –0.141∗∗∗ –0.234∗∗∗ –0.126∗∗∗

(0.005) (0.015) (0.006)

Observations 586,836 586,836 586,836

Notes: This table reports the estimation results for the Poisson regression (5) and (6). PfPR2−10 (75%+) × Post

indicates the interaction between the indicator of high-prevalence regions (PfPR in 2001 exceeding 0.75) and

the post-treatment indicator. Other interaction terms are defined similarily. Samples are restricted to women

between age 30 and 49 in 2012, and those who were born and residing (surveyed) in the same region in 2012.

Control variables included are age and years of schooling of the respondents and urban-rural residential status.

Variable Urban indicates whether the respondent reside in the urban part within the region. All columns include

region fixed effects. ∗, ∗∗, and ∗∗∗ indicate significance at the 10, 5, 1% levels.

51



Table B4: Malaria in Tanzania Among Children under age 10

Panel A: Top 5 illnesses that led to hospitalization (%)

Wave 1 Wave 2 Wave 3 Wave 4 Average

Malaria - 41.21 49.1 39.62 43.27

Fever - 21.21 15.77 21.92 19.68

Stomach - 7.58 3.58 4.23 5.29

Diarrhea - 5.45 6.45 1.92 4.72

Headache - 0.91 0 0.38 0.46

Panel B: Top 5 illnesses that caused death (%)

Malaria 55.56 42.39 60.62 46.81 51.35

Diarrhea 7.78 15.22 0.00 4.26 7.69

Vomiting 0.00 1.63 0.00 0.00 0.62

Flu 0.00 0.54 0.62 0.00 0.42

Asthma 2.22 1.09 0.62 0.00 1.04

Note: From Tanzania Household Panel Survey, wave 1 (2008) – wave 4 (2014).

The survey questions were "What is the 1st type of illness or injury did [NAME]
had that led to his/her hospitalization?" for hospitalization, and "What was the

illness that caused [NAME]’s death?" for the death. Responses from the parents

who were unsure of the cause of deaths are excluded.
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C. Robustness of Empirical Findings

Figure C.1: Gross Fertility
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Figure C.2: Child Mortality
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Figure C.3: Net Fertility
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Figure C.4: Yrs of schooling 10-15
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Figure C.5: Yrs of schooling 15-20
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Figure C.6: Yrs of schooling 20-30
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D. Additional Empirical Results

Table D1: Child Quantity Regression for Different Age Groups

Age group of women in 2012

Age 30-39 Age 40-49 Age 50-59 Age 60-69

Panel A: Child Mortality
Dependent variable: Number of children ever died

Post −0.399∗∗∗ −0.234∗∗∗ −0.233∗∗∗ −0.180∗∗∗

(0.019) (0.023) (0.023) (0.020)

PfPR2−10 (75%+) × Post −0.160∗∗∗ −0.074 0.020 −0.025

(0.047) (0.064) (0.038) (0.063)

Panel B: Gross Fertility
Dependent variable: Number of children ever born

Post −0.077∗∗∗ −0.137∗∗∗ −0.146∗∗∗ −0.054∗∗∗

(0.008) (0.010) (0.012) (0.013)

PfPR2−10 (75%+) × Post −0.060∗∗∗ −0.053∗∗∗ 0.004 0.007

(0.009) (0.014) (0.018) (0.028)

Panel C: Net Fertility
Dependent variable: Number of surviving children

Post −0.034∗∗∗ −0.126∗∗∗ −0.137∗∗∗ −0.033∗∗

(0.010) (0.011) (0.012) (0.015)

PfPR2−10 (75%+) × Post −0.007 −0.035∗∗ 0.010 0.035∗

(0.019) (0.017) (0.013) (0.018)

Observations 355,644 231,192 133,687 90,455

Notes: This table reports the estimation results from Poisson regression (5) and (6) from different

age groups for women. PfPR2−10 (75%+) × Post indicates the interaction between the indicator

of high-prevalence regions (PfPR in 2001 exceeding 0.75) and the post-treatment indicator.

Other interaction terms are defined similarily. Samples are restricted to women who were born

and residing (surveyed) in the same region in 2012. Control variables included are age and

years of schooling of the respondents and urban-rural residential status. Variable Urban indicates

whether the respondent reside in the urban part within the region. All columns include region

fixed effects. ∗, ∗∗, and ∗∗∗ indicate significance at the 10, 5, 1% levels.
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Table D2: Heterogeneous Effects of the RBM on Years of Schooling by Gender

Age group in 2012

Age 10-15 Age 15-20 Age 20-25 Age 20-30

Panel A: Male
Dependent variable: Years of schooling

Post 1.128∗∗∗ 1.358∗∗∗ 1.183∗∗∗ 0.404∗∗∗

(0.044) (0.070) (0.086) (0.078)

PfPR2−10 (75%+) × Post 0.561∗∗∗ 0.997∗∗∗ 0.639∗∗∗ -0.006

(0.091) (0.107) (0.120) (0.102)

Observations 551,298 414,836 296,759 269,074

Panel B: Female

Post 1.161∗∗∗ 1.492∗∗∗ 0.914∗∗∗ 0.324∗∗∗

(0.043) (0.073) (0.089) (0.085)

PfPR2−10 (75%+) × Post 0.710∗∗∗ 0.947∗∗∗ 0.378∗∗∗ -0.272

(0.105) (0.144) (0.120) (0.276)

Observations 544,976 441,917 377,984 338,902

Notes: This table reports the estimation restuls from OLS regression (7), run separately for male

and female. Brackets contain standard errors clustered at the region level. PfPR2−10 (75%+)

× Post indicates the interaction between the indicator of high-prevalence regions (PfPR in 2001

exceeding 0.75) and the post-treatment indicator. Other interaction terms are defined similarily.

Samples are restricted to the individuals who were born and residing (surveyed) in the same

region in 2012. Variable Urban indicates whether the respondent reside in the urban part within

the region. All columns include region fixed effects. ∗, ∗∗, and ∗∗∗ indicate significance at the 10,

5, 1% levels.
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