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Abstract

We study the costs of misallocation of inputs between multi-product firms 
that endogenously choose among heterogeneous products. Misallocation of in-
puts between firms has been shown to be a  significant drag on  aggregate pro-
ductivity: it is especially severe between farms in the agricultural sectors of low-
income economies. Existing estimates of its costs have relied on models of single-
product firms using a  s ingle aggregate production f unction. Using r ich farm-
crop-level data from India, we estimate product-level production functions and 
find that they are meaningfully different from one another and from the aggre-
gate one. We build a general equilibrium model of firm-level misallocation in 
which multi-product firms (or farms) are able to choose the set and mix of het-
erogeneous products. Misinterpreting product heterogeneity as evidence of dis-
tortions and missing the endogenous product choice response to real distortions 
biases single-product models to overstate misallocation, while ignoring returns-
to-scale heterogeneity and within-firm productivity dispersion biases t hem to 
understate it. On net, the single-product model understates the aggregate pro-
ductivity cost of misallocation between Indian farms by 28%.
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1 INTRODUCTION
Misallocation of production inputs between firms is an important driver of cross-
country income differences (Hsieh and Klenow 2009; Restuccia and Rogerson 2017).
Various market frictions and distortionary government policies prevent inputs from
being allocated to their most productive uses: some productive firms would prefer
to hire more land, labor, or capital, while some less productive ones would be happy
to supply these inputs. However, both parties find themselves unable to do so due
to imperfect markets or institutional obstacles, limiting the aggregate productivity of
the entire economy. Misallocation is especially severe between farms within the agri-
cultural sectors of low-income countries: allowing farmers to efficiently trade land
could triple the aggregate agricultural productivity in the most distorted markets
(Chen, Restuccia, and Santaeulalia-Llopis 2022). Some of the estimated aggregate
cost of misallocation can be explained my mismeasurement and model misspecifica-
tion (Bils, Klenow, and Ruane 2021; Gollin and Udry 2021; Asker, Collard-Wexler,
and De Loecker 2014). At the same time, a large portion of this cost reflects real
malign frictions: poor land property rights enforcement, inefficient land distribution
institutions, distortionary government policies, poor market access, and more (Got-
tlieb and Grobovšek 2019; Chen 2017; Krishnaswamy 2018; Le 2020; Morando 2023).
Understanding both the costs and the causes of misallocation is crucial for under-
standing the obstacles to aggregate development, especially in agriculture, where
cross-country productivity differences are particularly stark (Gollin, Lagakos, and
Waugh 2014).

The misallocation literature has focused on studying single-product firms. The
literature on agricultural misallocation has further modeled all farms as producing
the same homogeneous agricultural good. Farms in the data, however, have wildly
different selections of crops: we find that even the most commonly grown crop in
India is produced by only one-quarter of all farmers. Moreover, two-thirds of Indian
farmers grow two or more different products within a year.

In this paper, we study the aggregate costs of misallocation of inputs between
multi-product farms that choose among heterogeneous products. When products
have different production functions, they will be exposed differentially to misalloca-
tive market distortions. This causes conventional single-product models to overes-
timate the frictions present in the economy and to underestimate the ability of pro-
ductive farms to expand output if frictions were removed.
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We explore these mechanisms in rich farm-crop-level data from India. We doc-
ument significantly heterogeneous product choice across farmers, across seasons,
and frequent multi-product behavior by individual farmers. Next, we estimate crop-
specific production functions using instruments derived from shocks to other plots
within a farm to address the simultaneity bias. We find that many crops have sig-
nificantly different input elasticities from one another—and from the traditional ag-
gregate agricultural good production function—suggesting that products in the data
are meaningfully heterogeneous for the purpose of quantifying misallocation.

We build a general equilibrium model of heterogeneous firms facing misalloca-
tive distortions. Themain novelty of themodel is that firms (or farms) choose among
multiple products (or crops) with heterogenous production functions and can elect
to produce any number of products at once. Themodel provides amapping from the
observable farm-crop-level input and output choices to the unobservable fundamen-
tal distortions that are the model’s stand-in for all kinds of institutional and market
frictions. Once these distortions are recovered from the data, the model provides a
quantification of the aggregate cost of misallocation induced by the frictions.

Themulti-productmodel highlights fourmechanisms bywhich conventional single-
product models misestimate the cost of misallocation when the data is generated by
firms producing heterogeneous products. First, single-product models erroneously
perceive heterogeneous product choice as evidence of underlying frictions evenwhen
the heterogeneity is drivenpurely bydifferential productivity draws: this leads single-
product models to overstate the cost of misallocation in the data. Second, single-
product models ignore firms’ endogenous product choice response to the frictions
they face. In the presence of misallocative distortions and a choice between products
with heterogeneous production functions, model firms are able to partly reduce their
exposure to distorted inputmarkets by shifting their product choice away fromgoods
intensive in the relatively distorted input toward goods intensive in the relatively
undistorted one. This endogenous response reduces the aggregate cost of misalloca-
tion for given fundamental distortions: because single-product models are blind to
this response, they overstate the cost of misallocation. Third, single-product models
ignore productivity heterogeneity between products within a single firm, understat-
ing the underlying productivity dispersion: this leads them to understate the cost of
misallocation. Finally, single-product models ignore the returns-to-scale heterogene-
ity between products, missing that, if frictions were removed, some firms would be
able to scale production up more easily than others and consumers would be able
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to substitute toward high returns-to-scale crops to take advantage of this difference:
this leads them to understate the cost of misallocation.

Wemap the firm-product-levelmodel to Indian farm-crop-level data. We conduct
quantitative reallocation exercises in both the multi-product and the single-product
models to evaluate the net effect of the four mechanisms on aggregate misallocation
within India’s agricultural sector. In our preferred calibration, the single-product
model understates the cost of misallocation of inputs across farms by 28%: account-
ing for product heterogeneity and multi-product behavior, an efficient reallocation
of land, labor, and intermediate inputs across farms promises an almost four-fold in-
crease in agricultural productivity, compared to the three-fold increase estimated by
the single-product model. This effect is mainly driven by the returns-to-scale mech-
anism, which overpowers the mechanisms that push the single-product model in
the direction of overstatement. However, the sign and the magnitude of the single-
product model’s net error depend on the exercise being conducted. A partial reallo-
cation that would bring the severity of distortions across India down to the levels of
the least-distorted state would increase India’s agricultural productivity by 35% ac-
cording to the multi-product model: the single-product model overstates this figure
by a quarter, with the bulk of the error explained by its erroneous view of heteroge-
neous product choice as evidence of frictions.

Accounting for the effect of product heterogeneity and multi-product behavior
on the cost of misallocation is thus not a matter of applying a simple correction to
the results of conventional single-product models: the severity and the direction of
the single-product model’s error will depend on the exercise of interest. When most
estimated dispersion is seen to reflect real frictions that ought to be removed, the re-
sulting expansive estimate of misallocationwill be understated by the single-product
model due to its missing heterogeneous returns to scale allowing some farms to ex-
pand output more easily. But whenmost estimated dispersion between farms is seen
to be not feasible or even desirable to remove, the resulting conservative estimate of
misallocation will be overstated by the single-product model due to its treatment of
product heterogeneity as evidence of frictions.

Estimating the cost of agricultural misallocation in farm-level data is the subject
of a growing literature. The foundational result on the severity of misallocation in
the agriculture of low-income countries was established by Chen, Restuccia, and
Santaeulalia-Llopis (2022). Some papers focus on identifying a particular institu-
tional source of distortions in the data and then using a model to quantify the aggre-
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gate cost of those distortions (Chen 2017; Gottlieb and Grobovšek 2019; Adamopou-
los et al. 2022). Others seek to capture all sorts of market frictions and government
distortions generally, andmakemethodological contributions to estimating their cost
(Gollin andUdry 2021; Aragón, Restuccia, and Rud 2022; Ayerst, Brandt, and Restuc-
cia 2023). Our paper contributes to the literature by departing from its assumption
of a single homogeneous agricultural product. We estimate crop-specific production
functions and build a model of multi-product farms endogenously choosing among
those crops. We thus contribute both to the question of measuring distortions in the
data and to the question of quantifying the aggregate cost of these distortions.

The effects of government policy or technological changes on country-level crop
allocation have been explored before. Blanco and Raurich (2022) show that falling
capital costs cause the aggregate allocation to shift toward capital-intensive crops. Le
(2020) finds that land use policies in Vietnam generate aggregatemisallocation by fa-
voring rice over other crops. Krishnaswamy (2018) documents that Indian price sup-
port for staple crops distorts the market in favor of rice and wheat. We contribute to
this literature by exploring the interplay between distortions and product choice not
at the aggregate level, but at the level of individual farmers. The model we devise
then allows us to map the micro-level distortions and farm responses to aggregate
productivity: this mapping would apply to any individual friction the literature has
studied before. A related contribution is by Ayerst, Brandt, and Restuccia (2023),
who incorporate crop choice into their model of farm-level misallocation with farm
dynamics. However, they model single-product farms producing the same homo-
geneous agricultural good: crops are heterogeneous only in their productivities and
the productivity-maximizing choice is prevented only by direct land use restrictions.
Our model instead incorporates multi-product farms choosing between crops with
heterogeneous production functions, opening up several channels of interaction be-
tween product choice, estimated distortions, and resulting misallocation.

Multi-product firms have been discussed in the manufacturing misallocation lit-
erature by Jaef (2018) and Wang and Yang (2023). In both papers, firms face dis-
tortions and can choose the number of products to manufacture among varieties that
have the same production function but different productivities. Both papers then cal-
ibrate their models to match cross-sectional distribution moments in the data. First,
we contribute to this literature by exploring product choice between products not just
with different productivities but also with different input elasticities: it’s the latter
that ends up driving the differential predictions between the single- and the multi-
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product model in our setup. Second, we contribute by extending Hsieh and Klenow
(2009)’s framework of mapping firm-level observables to model-implied firm-level
fundamentals to the case of multi-product firms. This allows us to reproduce each
observed firm (or farm) with its model analog exactly, without having to calibrate
distributions of firms to aggregate moments.

Our contribution on the interaction betweenmisallocation and endogenous prod-
uct choice is not conceptually restricted to agriculture. However, there are several
reasons why agriculture is the perfect setting to begin studying this interaction. First,
firm-product-level (or farm-crop-level) inputs and outputs are far more feasible to
measure in agriculture than in other sectors. Farmers are better able to estimate the
amount of land, labor, and intermediate inputs applied to each crop. Such data is
also more commonly collected: we use India’s REDS, but multiple other farm-level
surveys gather crop-level information. Second, products (crops) are far more ho-
mogeneous in agriculture than in other sectors. Outside of very specific sub-sectors,
varieties produced by different manufacturers operating in the same sub-sector can
be vastly different. In agriculture, however, specimens of the same crop grown on
different farms can be reasonably approximated as homogeneous. This facilitates the
task of estimating product-level production functions and exploring systematic dif-
ferences in input intensities between products. For these reasons, we choose to focus
our initial exploration of endogenous product choice on agriculture. But the mech-
anism applies more broadly, and insights gleaned from the agricultural setting of a
developing country will apply also to the manufacturing sectors of more developed
countries.

The paper proceeds as follows. Section 2 discusses the farm-level data we use
and the institutional context of Indian agriculture. Section 3 documents the hetero-
geneous product choice among Indian farmers. Section 4 estimates crop-level pro-
duction functions. Section 5 describes the multi-product firm model of misalloca-
tion. Section 6 quantifies misallocation and compares it across models. Section 7
concludes.
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2 BACKGROUND AND DATA

2.1 BACKGROUND
Indian agriculture is very diverse and one of the largest in theworld in terms of arable
lands.1 Around half of Indian agriculture is rainfed, although the share of the irri-
gated area has improved over the years. The agricultural sector employs 58 percent
of households and is a major source of income and livelihood for the majority of ru-
ral households (Gulati and Juneja 2022). It is worth noting that women make up 30
percent of total cultivators and 41 percent of agriculture laborers. However, women
only manage and operate 14 percent of the total operational holding (Chanana-Nag
and Aggarwal 2020).

LANDMARKET AND TENANCY STRUCTURE. The Indian agricultural systemwas a za-
mindari system during the colonial era, wherein lands were in the hands of the few
who had the right to lease them out and collect revenue (Banerjee and Iyer 2005).
However, after 1947, the government of India brought several land and tenancy-
related reforms that changed the structure of ownership and leasing rights. These
reforms varied in scale, timing, and implementation across Indian states (Deininger,
Jin, and Nagarajan 2008).

Themajority of agricultural land in India is privately ownedbyhouseholds. Small-
holder farming is widespread. In 1999-2000, the average farm size was 5.3 acres per
household, which declined to 4.4 acres in 2007-08 and further to 2.6 acres in 2015-16.
This decrease in land holding size can be attributed to family splintering (Andrew D
Foster and Mark R Rosenzweig 2002). Land is seldom sold and bought: more than
94 percent of land owners inherited their land. Furthermore, only 12 percent of agri-
cultural cultivators participate in the land rental market by renting land either in or
out.2 Low participation in the land market hinders productivity as it limits the re-
allocation of land to productive farmers (Deininger et al. 2003; Bolhuis, Rachapalli,
and Restuccia 2021).

AGRICULTURAL SEASONS. There are threemajor agricultural seasons in India, namely
Kharif (monsoon), Rabi (spring/winter), and Zaid (summer/dry). The Kharif sea-

1. India possesses more than 150 million hectares of arable land and comes second after the USA.
2. Source: Rural Economic and Demographic Survey (REDS) 2007-08.
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son typically spans from May/June to early October, during which crops like paddy
(rice), maize, sugarcane, jute, cotton, groundnut, and turmeric are cultivated. The
Rabi season takes place during winter, with crops being sown between October and
December and harvested from March to April. Major crops of the Rabi season are
wheat, barley, peas, gram, and mustard. Finally, the Zaid season, the shortest of the
three, occurs fromMarch/April toMay/June; fruits and vegetables are grown during
this season.

2.2 DATA
Our primary data source is the Rural Economics and Demographic Survey (REDS),
which was conducted by India’s National Council of Applied Economic Research
in 1971, 1981, 1999, and 2007-08.3 The first round was collected in 1971. On each
subsequent round, all households (or their descendants) living in the same village
were surveyed again, along with a random selection of new replacement households
(Vashishtha 1989).4 The survey is nationally representative of rural India.

For this analysis, we use REDS 2007-08 (hence REDS07), covering a sample of
8,659 households across 242 villages in 17 major states in 2007/08. REDS07 collects
detailed information on agricultural inputs and outputs at the level of plot-season-
crops. We restrict our attention to this round because it is the only one in which
agricultural data was collected at the plot level, which is necessary for our produc-
tion function identification strategy. Household and village-level modules of the sur-
vey were administered during 2007-08. Of the surveyed households, 4,803 cultivated
land: we treat each such household as a farm and restrict our sample to them. In
total, these farmers cultivated 10,318 plots.

3 HETEROGENEOUS PRODUCT CHOICE BY INDIAN FARMS

CROP CHOICE IS HETEROGENEOUS. Indian farmers vary greatly inwhich crops they
choose to produce. Figure 1 shows the 10 most commonly produced crops in India.
Rice is the most popular crop—yet it is grown only by 26% of farmers. Wheat is a
close second, but all other crops are far behind: Indian farmers have little overlap in

3. Prior to 1981-82, the survey was known as the Additional Rural Income Survey (ARIS).
4. In 1971, the sampling frame included one district per state in the Intensive Agricultural District

Program (IADP) and a random sample of other districts.
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crops they choose to grow.5

FIGURE 1: Top 10 crops by % of farm-seasons growing them

MANY FARMS GROW MULTIPLE PRODUCTS. Figure 2 displays the share of output
produced by farms that grow different numbers of crops. The top bar counts crops
that were grown by each farm within the survey year, even if the crops were grown
in different seasons: over 80% of output is produced by farmers that grow multiple
crops within a year. The bottom bar of Figure 2 treats farm-season combinations as
separate entities, thus only counting crops that were all grown in the same season:
two-thirds of output is produced by farmers that grow nothing else in the same sea-
son, and one-third is produced by multi-crop farmers. Farmers are more specialized
within each season than across, although the extent of multi-crop behavior is signif-
icant in both cases.

These results have two potential implications for modeling and quantifying mis-
allocation. First, they suggest that production should be split by season when quan-
tifying misallocation, since crops grown in different seasons may be meaningfully
different and would affect misallocation estimates if this heterogeneity is not taken
into account. Second, the magnitude of multi-crop production is non-negligible both

5. Appendix Figure A.1 shows that the ranking of crops by their share in aggregate output has a
similar shape, although the order of crops does change.
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FIGURE 2: Share of output produced by farms growing each number of crops (within
a year or within each season alone)

within and across seasons, suggesting that not only modeling heterogeneous crop
choice but also the simultaneous cultivation of multiple crops may be important.

At the same time, the apparent heterogeneity of product choice across Indian
farmers, across seasons, and the presence of multi-cropping may be of little conse-
quence for estimating misallocation if different crops have similar production func-
tions and would thus interact with distorted input markets the same way. In the
next section, we estimate crop-specific production functions to test whether this is
the case.

4 ESTIMATINGPRODUCT-SPECIFIC PRODUCTIONFUNCTIONS
Thepreceding sectiondocumented that Indian farmers engage in heterogeneousmulti-
product behavior. In this section, we investigate whether these products are mean-
ingfully different in their production functions.
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4.1 SPECIFICATION
To estimate input elasticities, we estimate the following crop-specific Cobb-Douglas
production function:

𝑦𝑓 ,𝑖,𝑡 = 𝑧𝑓 ,𝑖,𝑡𝑙
𝛾𝑖
𝑓 ,𝑖,𝑡𝑥

𝛼𝑙𝑎𝑏𝑜𝑟,𝑖
𝑙𝑎𝑏𝑜𝑟,𝑓 ,𝑖,𝑡𝑥

𝛼𝑖𝑛𝑡𝑒𝑟,𝑖
𝑖𝑛𝑡𝑒𝑟,𝑓 ,𝑖,𝑡

𝑦𝑓 ,𝑖,𝑡 is the gross physical output of farm 𝑓 for crop 𝑖 in season 𝑡, weighted with mar-
ket prices (this weighting is irrelevant at the estimation stage).6 𝑙 is the land input
with crop-specific elasticity 𝛾𝑖. The land input is adjusted for quality, as described
in Section 4.3 below. 𝑥𝑙𝑎𝑏𝑜𝑟 is the labor input with elasticity 𝛼𝑙𝑎𝑏𝑜𝑟,𝑖, measured in the
number of days worked, including both hired and family labor. 𝑥𝑖𝑛𝑡𝑒𝑟 is the interme-
diate input with elasticity 𝛼𝑖𝑛𝑡𝑒𝑟,𝑖, measured as to
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price of inputs on plot 𝑗, providing variation in plot-level input prices that can be used
as instrumental variables for input allocations on plot 𝑗. The identification of the pro-
duction function rests on two assumptions: first, that observed shocks to farm 𝑓 ’s
plot 𝑘 affect the shadow price of inputs on 𝑓 ’s plot 𝑗; second, that observed shocks
affecting input demand on plot 𝑘 are not correlated with unobserved shocks affect-
ing input demand on plot 𝑗, conditional on observed shocks to 𝑗. The survey collects
information on a wide array of agricultural, health, and social shocks at the house-
hold level. Gollin and Udry (2021) posit that these shocks will have different effects
on individual plots depending on the physical features of each plot. Therefore, the
household-level (or farm-level) shocks interacted with observed objective plot-level
soil features provide the necessary plot-level variation, which serve as instruments
for plot-level input choices. Of the three inputs, land deserves special treatment due
to its centrality to agricultural production: we turn to it next.

4.3 LAND INPUT MEASURE
There are two commonly used ways of measuring the quantity of the land input in
agricultural survey data similar to India’s REDS. The first is to measure it with the
physical area of cultivated land. This quantity can be measured very precisely and
objectively but lacks any information on the quality of land. The second is tomeasure
it with the reportedmarket price of cultivated land, which should capture quality dif-
ferences between plots. However, landmarkets in India (andmany other developing
countries) are extremely under-developed, and so themarket price reported by farm-
ers is likely to be exceptionally noisy and mismeasured: in the absence of a market,
farmers’ ability (and need) to estimate the market price of their land is likely to be
poor.

Instead of following either of these two approaches, we settle on a compromise
solution that attempts to combine the best of both. We measure the land input on
each plot with its physical area weighted by a quality index: price per acre predicted
by a statistical model using only the observed objective characteristics of the plot as
predictor variables. The objective characteristics measured in the data and included
as predictors are various qualities of soil (its type, color, salinity, depth, percolation,
and ease of drainage) and objective measures of irrigation access (presence and fea-
tures of nearby irrigation wells and canals).

The task of constructing the land quality is effectively a regression. Instead of an
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ordinary least squares regression (OLS), however, we employ random forests (RF): a
supervised machine learning algorithm developed by Breiman (2001). The random
forestmodel “grows” a large number of decision trees, with each tree using a random
bootstrap sample of the data, and aggregates the predictions of individual trees.8

Unlike OLS, RF does not require the econometrician to pre-specify the interactions
and non-linearities expected in the data: it searches for them on the fly and adapts to
what it finds in the data. Furthermore, random forests tend to outperform OLS and
many other machine learning techniques in out-of-sample predictive performance,
reducing the danger of overfitting the noise in reported market price (Varian 2014;
Mullainathan and Spiess 2017).

To evaluate both methods, we estimate an OLS regression and an RF regression
using a training sample that randomly selected two-thirds of our data, with the re-
maining one-third reserved for the test sample. Both methods regress log price per
acre on the observed physical characteristics of the plot. The OLS regression includes
a complete set of two-way interactions. The RF’s parameters 𝑚𝑡𝑟𝑦 and 𝑛𝑜𝑑𝑒𝑠𝑖𝑧𝑒 were
tuned with 𝑘-fold cross-validation (with 𝑘 = 3), although tuning provides only a
small improvement in predictive performance relative to conventional defaults.9

Once the two methods have been estimated, we evaluate their performance on
the reserved testing sample: results are presented in Table 1. The random forest has
both a lowermean squared error and a higher 𝑅2 than OLS. Due to RF’s better out-of-
sample performance, we elect to use it to construct the land quality index: predicted
price per acre computed for the whole sample.

Because the random forest captures over half of the observed variation in reported
price using nothing but observed objective plot features, it likely capturesmuch of the
underlying variation in land quality. Because we used predicted prices and took sev-
eral steps to minimize overfitting (bootstrapping within RF, 𝑘-fold cross-validation,
and train/test data split), this captured variation is driven by population-level rela-
tionships between plot characteristics and market price, rather than the noise in any

8. See Biau and Scornet (2016), Schonlau and Zou (2020), or Ziegler and König (2014) for excellent
reviews.

9. Each tree within a random forest is constructed by repeatedly finding the predictor variable and
its cutoff value at which to split the data into two branches that maximize the goodness of fit of the
branching. 𝑚𝑡𝑟𝑦 sets the number of candidate predictors randomly drawn to be considered for branch-
ing at each node when constructing each tree. 𝑛𝑜𝑑𝑒𝑠𝑖𝑧𝑒 sets the cutoff number of observations per
node at which further splitting stops. The third free parameter in a random forest is the number of
trees: we set it high enough that further increases do not improve predictive performance. See any of
the RF reviews cited above for details on their operation and the role of these parameters. See Bischl
et al. (2021) for an overview of 𝑘-fold cross-validation and other tuning techniques.
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TABLE 1: Out-of-sample performance of OLS and RF in predicting
land price

Ordinary Least Squares Random Forest
Mean Squared Error 0.61 0.49
𝑅2 0.39 0.51
Note. The table presents two metrics of out-of-sample performance of Ordinary
Least Squares (OLS) andRandomForest (RF) regressions in predicting log price
per acre of a plot with observed physical characteristics of the plot. Two-thirds
of plot-level observations were used for estimation and one-third was reserved
as a test sample to compute the presented out-of-sample performance metrics.

individual farmer’s measurement.

4.4 PRODUCTION FUNCTIONS ARE HETEROGENEOUS ACROSS PRODUCTS
Complete results from production function estimation are shown in Appendix Ta-
ble A.1. Figure 3 visually summarizes the estimated production function elastici-
ties, including 95% confidence intervals. The first panel displays the input elastic-
ities when a single production function is estimated on all crops pooled together:
the commonly used approach. In this case, the results are in line with the litera-
ture’s findings: land elasticity 𝛾 is the highest at 0.43, intermediates elasticity 𝛼𝑖𝑛𝑡𝑒𝑟 is
slightly lower at 0.35, labor elasticity 𝛼𝑙𝑎𝑏𝑜𝑟 is 0.19. The sum of the three elasticities is
0.97, insignificantly different from 1, indicating that the production function exhibits
slightly decreasing or roughly constant returns to scale.

As the following panels indicate, however, crop-specific production functions are
heterogeneous across crops. Rice is significantly more land-intensive than the ag-
gregate production function would indicate. Wheat is more intermediates-intensive
than rice or the aggregate function, and its returns to scale are increasing. Cereals
other than wheat are more in line with the aggregate elasticities but have signifi-
cantly decreasing returns to scale. For pulses, all three inputs are similarly important.
Vegetables, fruits, and oils are more labor-intensive than any other crop, and exhibit
decreasing returns to scale.

Pairwise comparisons of a given input’s elasticity across crops indicate that many
pairs of crops have significantly different elasticities from one another: see Figure 4.
For each input elasticity, there are (5

2) = 10 crop pairs that can be formed out of five
crops. Out of 3 × 10 = 30 such combinations across three input elasticities, a third
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FIGURE 3: Estimated production function input elasticities

Note. The figure visualizes the estimated input elasticities reported in Table A.1. 𝛾 is the land, 𝛼𝑙𝑎𝑏𝑜𝑟
the labor, and 𝛼𝑖𝑛𝑡𝑒𝑟 the intermediates elasticity. The sum of elasticities 𝛾 + 𝛼𝑙𝑎𝑏𝑜𝑟 + 𝛼𝑖𝑛𝑡𝑒𝑟 reflects the
returns to scale.

are significantly different at the 1% level and half at the 10% level. Production func-
tions are heterogeneous across products, and a single aggregate production function
provides only a poor approximation of any one individual crop. To quantify the rel-
evance of this heterogeneity for quantifying the cost of misallocation, we turn to the
model.

5 MODEL
The model pursues three objectives. The first is to provide a framework for thinking
about the production decisions of multi-product farmers in the presence of misal-
locative distortions. The second is to provide a mapping from observable farm-level
input and output choices to unobserved distortions these farms must be facing. The
third objective—and the ultimate goal of the paper—is to quantify the aggregate cost
of misallocation induced by distortions and to tease out the role of product choice in
explaining this cost.

To achieve these objectives, we build amodel of farm-level misallocation in which
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FIGURE 4: P-values of pairwise coefficient comparisons across crop-level production
functions

Note. P-values are obtained from tests of equality of input elasticities between each pair of crops in
Appendix TableA.1. Color-coded significance levels for rejecting coefficient equalitywithin each crop-
pair-input: 𝑝 < 0.1, 𝑝 < 0.05, 𝑝 < 0.01.

multi-product farmers make production decisions over heterogeneous products. It
builds upon the single-product firm model of Hsieh and Klenow (2009).10 Because
their model was applied to data on manufacturing firms, it assumed monopolis-
tic competition and a constant-returns-to-scale production function. Because agri-
cultural markets are populated with small producers growing fairly homogeneous
crops, we assume perfect competition instead, in linewith the simpler single-product
agriculturalmisallocation framework ofChen, Restuccia, and Santaeulalia-Llopis (2022).
Instead of assuming constant or decreasing returns to scale for all crops, we rely on
our estimated returns to scale for each crop.

5.1 FARM PROBLEM
The economy is populated by 𝐹 heterogeneous farmers making production decisions
over 𝑁 heterogeneous crops.

Consider the problem of a profit-maximizing farm 𝑓 . The farm produces quantity
𝑦𝑓 ,𝑖 of each crop 𝑖 and sells it at market price 𝑝𝑖. The farm has idiosyncratic produc-
tivity 𝑧𝑓 ,𝑖 in each crop. It chooses how much of each input to hire or allocate to each
crop.

10. Which in turn is closely related to Restuccia and Rogerson (2008).
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INPUTS. Inputs 𝑔 = 1, … , 𝐺 are flexible: the farm can hire each at market rate 𝑟𝑔.
The flexible input elasticity 𝛼𝑔,𝑖 is input-crop-specific. In our calibration, there are two
flexible inputs (𝐺 = 2): labor and intermediates. The farm chooses quantity 𝑥𝑓 ,𝑔,𝑖 of
each input 𝑔 to allocate to each crop 𝑖.

Land input 𝑙 is available to the farm in fixed supply 𝐿𝑓 : the farm needs to decide
how to split this endowment between available crops, assigning 𝑙𝑓 ,𝑖 to each. The crop-
specific land elasticities are 𝛾𝑖. There are three reasons for modeling land as a fixed
input. The first is that it is a reasonable approximation of the state of the land market
in India. Land is rarely purchased, sold, or rented: it is usually simply inherited. The
second is that having one input be in fixed supply generates interdependent crop
production: a change in parameters of crop 𝑖 will lead to a change in the shadow
cost of the fixed input (land) and thereby impact the input and output decisions the
farm makes on crops 𝑗 ≠ 𝑖.11 The third is that an input in fixed supply justifies the
production function identification assumptions we made in Section 4: land 𝑙 and its
shadow cost 𝜆𝑓 provides the link through which observable shocks to one plot can
affect the shadow cost of inputs on other plots.

Inputs are combined with Cobb-Douglas production technology to produce each
crop 𝑖: 𝑦𝑓 ,𝑖 = 𝑧𝑓 ,𝑖𝑙

𝛾𝑖
𝑓 ,𝑖Π𝑔 (𝑥𝛼𝑔,𝑖

𝑓 ,𝑔,𝑖).

DISTORTIONS. Misallocative frictions in this class of models are captured by dis-
tortion terms 𝜏𝑓 ,𝑔. These are idiosyncratic to the farm and operate as taxes or subsi-
dies. If farm 𝑓 ’s 𝜏𝑓 ,𝑔 is higher for input 𝑔 than for input ℎ, the farm is facing stronger
frictions in input 𝑔’s market, and will hire a relatively higher quantity of ℎ instead. If
farm 𝑓 ’s frictions 𝜏𝑓 ,𝑔 for all inputs are higher than those of farm 𝑒, then farm 𝑓 will
hire less of every input and will operate at an inefficiently small scale compared to
farm 𝑒. This simple framework has been used in themisallocation literature to capture
all kinds of market frictions and government distortions that firms may be suffering
from. Any variation in input ratios or firm scales that is unexplained by the observed
production functions and productivities can be replicated by these distortion terms.

Furthermore, once we add multi-product firms into the model, we have to add
another layer of distortions. 𝜏𝑓 ,𝑔,𝑖 and 𝜏𝑓 ,𝑙,𝑖 are farm-input-crop-specific distortions
that can fit unexplained variation in input ratios between crops of a single farm.

11. The importance of modeling interdependent crop production with a fixed input rather than any
alternative mechanisms is discussed in Just, Zilberman, and Hochman (1983) and Shumway, Pope,
and Nash (1984).
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Finally, while land input 𝑙 does not have an explicit distortion term like 𝜏𝑓 ,𝑙 in the
model, land is still de facto distorted since its quantity is fixed. Any variation in the
shadow cost of land 𝜆𝑓 between farms reflects implicit 𝜏-like frictions that prevent the
farmers from operating an efficient amount of land. As long as land is not distributed
in precisely the right way to equalize 𝜆𝑓 between farmers, it is distorted, with the
dispersion of 𝜆𝑓 reflecting the severity of distortions.

ADDITIONAL CONCAVITY. When crop-specific production functions have decreas-
ing returns to scale, model farms choose to grow multiple crops at once. However,
most of the crop-specific production functions estimated in Section 4.4 exhibit re-
turns to scale that are close to constant, generating little multi-cropping in the model
unless frictions are extreme: production concavity alone struggles to explain the ex-
tent of multi-product behavior in the data. To allow for a range of other mechanisms
that may incentivize farmers to grow multiple crops, we raise the crop-level revenue
within the farmer’s objective function to some power 𝜂 ≤ 1. When 𝜂 < 1, this gen-
erates additional concavity in crop-level revenue. Introducing this parameter allows
themodel to parsimoniously capturemechanisms such as risk (farmersmulti-crop to
hedge against uncertain revenue yields in each individual crop), diet diversification
by subsistence farmers (subsistence farmers grow multiple crops to satisfy their love
of variety), and market power (farmers with some market power in their local mar-
ket face downward sloping demand for each crop, generating revenue that is concave
in inputs). Appendix B shows that the latter two mechanisms, if modeled explicitly,
generate a farm’s problem that is exactly equivalent to the 𝜂 < 1 case. Another reason
to allow for 𝜂 < 1 is that it takes the burden of generating the observed distribution
of farm-crop revenues away from 𝜏 frictions, leading to more conservative misallo-
cation estimates, as Section 5.4 discusses below.

FIXED COST. For each crop 𝑖 that the farm chooses to produce (𝑦𝑓 ,𝑖 > 0), it pays
a fixed cost 𝜔. Without this feature, farmers would produce all possible crops, with
some of them grown in negligible quantities: introducing the fixed cost makes such
marginal crops unprofitable and leads the farm to drop them entirely. We introduce
the fixed cost to reproduce the observed distribution of the number of crops grown
per farm, discussed in Section 3.

PROBLEM. The complete problem of the farm is:
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max
{𝑦𝑓 ,𝑖,𝑙𝑓 ,𝑖}𝑖

,{𝑥𝑓 ,𝑔,𝑖}𝑔,𝑖

𝑁
∑
𝑖=1

(𝑝𝑖𝑦𝑓 ,𝑖)
𝜂

−
𝐺

∑
𝑔=1

𝑟𝑔𝜏𝑓 ,𝑔
𝑁

∑
𝑖=1

𝜏𝑓 ,𝑔,𝑖𝑥𝑓 ,𝑔,𝑖 −
𝑁

∑
𝑖=1

𝜔 ⋅ 1 [𝑦𝑓 ,𝑖 > 0] (2)

s.t.
𝑦𝑓 ,𝑖 = 𝑧𝑓 ,𝑖𝑙

𝛾𝑖
𝑓 ,𝑖Π𝑔 (𝑥𝛼𝑔,𝑖

𝑓 ,𝑔,𝑖) (3)

𝑁
∑
𝑖=1

𝑙𝑓 ,𝑖𝜏𝑓 ,𝑙,𝑖 = 𝐿𝑓 (𝜆𝑓 ) (4)

The solution and the computational algorithm are discussed in Appendix C.1.

5.2 GENERAL EQUILIBRIUM

CONSUMER. To close themodel, we introduce a representative consumerwho has
constant elasticity of substitution preferences over 𝑁 crops with elasticity of substi-
tution 𝜎 and crop-specific taste weights 𝜑𝑖. The consumer purchases quantity 𝐶𝑖 of
each crop from farms at price 𝑝𝑖. The consumer owns flexible inputs and rents out
the endowment 𝑋𝑎𝑔𝑔

𝑔 of each input 𝑔 to the farms at rental rate 𝑟𝑔. The consumer also
owns all farms and receives their profits as dividends Π.

The consumer’s problem is:

max
{𝐶𝑖}𝑁

𝑖=1

⎛⎜
⎝

∑
𝑖

𝜑𝑖𝐶
𝜎−1

𝜎
𝑖

⎞⎟
⎠

𝜎
𝜎−1

(5)

s.t.
∑

𝑖
𝑝𝑖𝐶𝑖 = ∑

𝑔
𝑟𝑔𝑋𝑎𝑔𝑔

𝑔 + Π (6)

For conciseness, we adopt the following formulation of the dividend Π:

Π = ∑
𝑓

⎡⎢
⎣

𝑁
∑
𝑖=1

𝑝𝑖𝑦𝑓 ,𝑖 −
𝐺

∑
𝑔=1

𝑟𝑔
𝑁

∑
𝑖=1

𝑥𝑓 ,𝑔,𝑖
⎤⎥
⎦

In this formulation, farmers act as if they faced distortions 𝜏𝑓 ,𝑔 and 𝜏𝑓 ,𝑔,𝑖, fixed cost
𝜔, and additional concavity 𝜂 (since these show up in farmers’ maximization prob-
lems), but these are ultimately non-monetary frictions and obstacles and so do not
show up in the dividends Π that farmers send to the consumer. An exactly equiva-
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lent formulationwould be to interpret distortions, fixed costs, and additional concav-
ity as monetary taxes or subsidies administered by the consumer: in this case, they
would be included in Π and would likewise show up (with an opposite sign) in the
consumer’s budget constraint as government revenue or expense.12

MARKET CLEARING. Crop prices 𝑝𝑖 and input prices 𝑟𝑔 need to be such that all
crops and all inputs markets clear:

𝐶𝑖 = ∑
𝑓

𝑦𝑓 ,𝑖 ∀𝑖 (7)

∑
𝑓

∑
𝑖

𝑥𝑓 ,𝑔,𝑖 = 𝑋𝑎𝑔𝑔
𝑔 ∀𝑔 (8)

Land needs to be distributed between farms in such a way that land used in cultiva-
tion equals the total amount of land available:

∑
𝑓

∑
𝑖

𝑙𝑓 ,𝑖 = 𝐿𝑎𝑔𝑔 (9)

The solution and the computational algorithm are discussed in Appendix C.2.

5.3 MAPPING OBSERVABLES TO FUNDAMENTALS
For the model to be useful for quantifying the cost of misallocation in the data, unob-
served distortions 𝜏 need to be estimable from observed characteristics. In the class
of misallocation models following Hsieh and Klenow (2009), the fundamental dis-
tortions faced by each firm can be mapped to marginal revenue products of inputs
chosen by the firm. With the assumed production structure, unobserved marginal
revenue products can be extracted from observed inputs and outputs.

This result extends to our multi-product model as well, for both flexible inputs 𝑔
and the land input 𝑙:

𝑟𝑔𝜏𝑓 ,𝑔𝜏𝑓 ,𝑔,𝑖 = 𝛼𝑔,𝑖𝜂
(𝑝𝑖𝑦𝑓 ,𝑖)

𝜂

𝑥𝑓 ,𝑔,𝑖
(10)

12. Extending this logic, distortion terms 𝜏 can be interpreted as amixture of non-monetary frictions
and monetary government taxes/subsidies. In this case, a fraction (representing the tax/subsidy por-
tion) of each 𝜏 would show up in Π and the consumer’s budget constraint. The choice between all
these interpretations is completely arbitrary as they collapse to identical equilibrium conditions.
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𝜆𝑓 𝜏𝑓 ,𝑙,𝑖 = 𝛾𝑖𝜂
(𝑝𝑖𝑦𝑓 ,𝑖)

𝜂

𝑙𝑓 ,𝑖
(11)

While only the total cost of the input can be extracted from the data in this way,
the split of the total costs 𝑟𝑔𝜏𝑓 ,𝑔𝜏𝑓 ,𝑔,𝑖 and 𝜆𝑓 𝜏𝑓 ,𝑙,𝑖 into their components is arbitrary
from the point of view of the farm. All that matters for quantifying misallocation is
the dispersion in these costs, which is driven entirely by the dispersion in distortion
𝜏 terms. The average level of each distortion is then split from the level of market
rental rates 𝑟𝑔 and the average land shadow cost by the general equilibrium market
clearing conditions. Furthermore, goods tasteweights𝜑𝑖 are picked to ensure that the
current allocation is consistentwith a general equilibrium: these details are discussed
in Appendix C.2.

The productivity of the farm in each grown crop 𝑧𝑓 ,𝑖 can be extracted from the
data directly using the assumed production function, exploiting the availability of
physical input and output quantities in the data:

𝑧𝑓 ,𝑖 =
𝑦𝑓 ,𝑖

𝑙𝛾𝑖
𝑓 ,𝑖Π𝑔 (𝑥𝛼𝑔,𝑖

𝑓 ,𝑔,𝑖)
(12)

SEASONS. As discussed in Section 3, viewing farms’ production at the annual
level may be deceptive as farmers tend to produce different products in different
seasons. Bundling production across seasons may lead to nonsensical counterfactual
predictions in themodel like the model farm reallocating three times its total amount
of land (summed across three seasons) to a single crop that’s only ever grown in the
most productive of the three seasons. Therefore, we map each model farm 𝑓 not to
an empirically observed farm, but to a farm-season combination. This ensures that
different seasons have distinct productivity distributions. Section 6.1 will discuss the
treatment of seasons at the aggregate level.

5.4 CALIBRATION

ADDITIONAL CONCAVITY PARAMETER 𝜼. Farm-crop revenue can be written as:

𝑝𝑖𝑦𝑓 ,𝑖 = ( ⎛⎜
⎝

1
𝜆𝑓 𝜏𝑓 ,𝑙,𝑖

⎞⎟
⎠

𝛾𝑖

Π𝑔 ⎛⎜
⎝

1
𝜏𝑓 ,𝑔𝜏𝑓 ,𝑔,𝑖

⎞⎟
⎠

𝛼𝑔,𝑖

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
composite distortion, 𝑑𝑖𝑠𝑡𝑓 ,𝑖

)
1

1−𝜂(∑𝑔 𝛼𝑔,𝑖+𝛾𝑖)
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⋅ (𝑝𝑖𝑧𝑓 ,𝑖𝛾
𝛾𝑖
𝑖 𝜂∑𝑔 𝛼𝑔,𝑖+𝛾𝑖Π ⎛⎜

⎝

𝛼𝑔,𝑖
𝑟𝑔

⎞⎟
⎠

𝛼𝑔,𝑖

)
1

1−𝜂(∑𝑔 𝛼𝑔,𝑖+𝛾𝑖)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
“objective” factors

(13)

where the composite distortion term summarizes the effects of distortions on revenue
and the “objective factors” term captures effects driven by productivity, production
parameters, and prices.

As Section 5.3 above discussed, the model can rationalize any observed hetero-
geneity across and within farms using 𝜏 distortions. However, the variance of dis-
tortions needed to achieve this (summarized in the variance of the log 𝑑𝑖𝑠𝑡𝑓 ,𝑖 term) de-
pends on the chosen additional concavity parameter 𝜂, as Figure 5 illustrates. When
𝜂 is low, the degree of concavity in farm-crop revenue is high: in the frictionless
optimum, farm-crop revenues are distributed comparatively uniformly, implying a
uniform size distribution across farms and significant cropmixing within farms. The
current observed allocation is highly dispersed in comparison, and the model ratio-
nalizes it with extreme frictions, producing a high variance of 𝑑𝑖𝑠𝑡𝑓 ,𝑖. When 𝜂 is high,
on the other hand, there is little concavity: in the frictionless optimum, farm-crop
revenues are dispersed, implying high dispersion in farm sizes and significant crop
specialization within farms. The current observed allocation is highly uniform in
comparison, and the model rationalizes it with extreme frictions yet again. Some-
where in between is an intermediate value of 𝜂 that allows the model to reproduce
the observed level of dispersion in farm-crop revenues with the most conservative
possible distribution of distortions.13 Upon estimation, the value that minimizes the
variance of log 𝑑𝑖𝑠𝑡𝑓 ,𝑖 in Equation 13 is 𝜂 = 0.63, and this is the value we elect for our
headline calibration.

Misallocation estimates in general are sensitive to the degree of concavity in the
model, whether that concavity comes from monopolistic competition (as in Hsieh
andKlenow 2009) or decreasing returns to scale in production (as in Chen, Restuccia,
and Santaeulalia-Llopis 2022). By introducing a flexible parameter 𝜂, we are able to
explicitly explore the dependence of our estimates on this parameter (as sensitivity
analysis will do in Section 6.2) and to intentionally pick a conservative estimate for
the headline calibration.
13. Distortions are demeaned within the season.
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FIGURE 5: Variance of log extracted composite distortion term vs additional concavity
parameter 𝜂

Note. The figure visualizes the variance of log𝑑𝑖𝑠𝑡𝑓 ,𝑖 from Equation 13 at different values of 𝜂. The
highlighted value of 𝜂 minimizes the variance.

ELASTICITY OF SUBSTITUTION 𝝈. Representative consumer’s demand for product
𝑖 is

𝐶𝑖 = (𝜑𝑖
𝑝𝑖

)
𝜎 ∑𝑔 𝑟𝑔𝑋𝑎𝑔𝑔

𝑔 + Π
∑𝑗 𝜑𝜎

𝑗 𝑝1−𝜎
𝑗

(14)

The log of product 𝑖’s share in consumption expenditure can then be written as

log⎛⎜
⎝

𝑝𝑖𝐶𝑖
∑𝑗 𝑝𝑗𝐶𝑗

⎞⎟
⎠

= − log⎛⎜⎜
⎝

∑
𝑗

𝜑𝜎
𝑗 𝑝1−𝜎

𝑗
⎞⎟⎟
⎠

+ (1 − 𝜎) log 𝑝𝑖 + 𝜎 log𝜑𝑖 (15)

Adapting the expression for household-level consumption data with households
indexed by ℎ and denoting crop 𝑖’s share in ℎ’s expenditure with 𝑠ℎ,𝑖, the expression
can be written as a regression:

log 𝑠ℎ,𝑖 = 𝛽0 + 𝛽1 log 𝑝ℎ,𝑖 + 𝛾𝑖 + 𝜀ℎ,𝑖 (16)

Then the elasticity of substitution can be extracted from the coefficient on log
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price: 𝜎 = 1 − 𝛽1. Furthermore, product taste weights can be extracted (up to a
normalization) from the estimated product fixed effects: 𝜑𝑖 = exp (𝛾𝑖

𝜎 ).
Estimating Equation 16 as-is will produce biased estimates of 𝛽1 due to potential

measurement errors in price creating a mechanical correlation between the left- and
the right-hand-side of the equation, and because some unobservables at the house-
hold or village level could also be correlated with both crop prices and expenditure
shares (Sotelo 2020; Kebede 2020). Therefore, we use an instrumental variable ap-
proach to address these concerns, instrumenting for crop prices using the interaction
of village-level measures of elevation and ruggedness with rainfall, as well as the
availability of pucca roads (all-weather roads). The rationale for using these instru-
ments is that villages with high ruggedness may experience lower agricultural pro-
ductivity when faced with negative rainfall shocks, consequently leading to higher
prices. Similarly, the availability of roads will affect the shadow prices of inputs and
hence affect agricultural production. Villages with bad road connectivity may expe-
rience higher labor prices and other input prices, raising the cost of crop production
and, therefore, negatively affecting the prices of crops. Using these instruments, we
estimate the equation 16.

Results of estimation are reported in Appendix Table A.2. We find that the F-
statistic for the first stage is 230, which establishes the instrument’s relevance. The
estimation yields 𝛽1 = −0.7, implying 𝜎 = 1.7. This is in between the estimates
obtained in a similar setting by Kebede (2020) for Ethiopia, 1.3, and by Sotelo (2020)
for Peru, 2.4.

5.5 PRODUCT CHOICE AND MISALLOCATION: MECHANISMS
Allowing for product heterogeneity, endogenous product choice, and multi-product
behavior in amodel of firm-levelmisallocation impacts the estimates ofmisallocation
obtained in the model. There are four major mechanisms through which a conven-
tional single-product model misestimates the severity of misallocation in the data
generated by farms growing heterogeneous crops. This section explores these mech-
anisms qualitatively.

SINGLE-PRODUCTMODELSMISINTERPRET PRODUCTHETEROGENEITY AS FRICTIONS. Even
in the absence of any fundamental frictions, the fact that different farms choose to
produce different products will lead the single-product model to mistake heteroge-
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neous crop choice for evidence of frictions.
Suppose that farm 1 draws a high productivity 𝑧1,𝑟𝑖𝑐𝑒 in rice and farm 2 draws a

high productivity 𝑧2,𝑣𝑒𝑔 in vegetables, causing each farm to specialize in their respec-
tive high-productivity crop (so that 𝑦1 = 𝑦1,𝑟𝑖𝑐𝑒 and 𝑦2 = 𝑦2,𝑣𝑒𝑔). In the absence of
frictions, marginal revenue products will be equalized across farms, accounting for
the fact that rice is more land-intensive but vegetables are more labor-intensive:

𝛼𝑔,𝑟𝑖𝑐𝑒𝜂(𝑝𝑟𝑖𝑐𝑒𝑦1,𝑟𝑖𝑐𝑒)𝜂

𝑥1,𝑔
=

𝛼𝑔,𝑣𝑒𝑔𝜂(𝑝𝑣𝑒𝑔𝑦2,𝑣𝑒𝑔)𝜂

𝑥2,𝑔
∀𝑔

However, themarginal products evaluated by the single-productmodel that assumes
a single aggregate production function for both crops will generally not happen to be
equal:

𝛼𝑔,𝑎𝑔𝑔𝜂(𝑝𝑎𝑔𝑔𝑦1)𝜂

𝑥1,𝑔
≠

𝛼𝑔,𝑎𝑔𝑔𝜂(𝑝𝑎𝑔𝑔𝑦2)𝜂

𝑥2,𝑔
∀𝑔

The heterogeneity in input choices between the two farms, and the resulting het-
erogeneity in single-product marginal revenue products will lead the single-product
model to impute frictions where there are none and thus to overstate the true cost of
misallocation.

Figure 6 illustrates this mechanism for a set of farms that suffer from no distor-
tions (𝜏𝑓 ,𝑔 = 1 ∀𝑓 , 𝑔; 𝜆𝑓 = 𝜆̄ ∀𝑓 ) but have different relative productivities in rice
vs vegetables. Farmers who are relatively productive in rice specialize in this land-
intensive crop, while farmers who are relatively productive in vegetables specialize
in this labor-intensive crop. The single-productmodel explains the heterogeneous in-
put choices with heterogeneity in friction terms, such as the pictured single-product
model’s estimated ̂𝜏𝑓 ,𝑙𝑎𝑏𝑜𝑟.

SINGLE-PRODUCT MODELS MISS THE ENDOGENOUS RESPONSE OF FARMS TO FRICTIONS.
The existence of choice between heterogeneous products changes how farmers re-
spond to distortions. Figure 7 shows how crop-specific outputs change as the labor
market distortion is altered for a farm that has access to two crops: rice (relatively
land-intensive) and the combined “vegetables, fruits, and oilseeds” crop (relatively
labor-intensive). When the labor distortion 𝜏𝑓 ,𝑙𝑎𝑏𝑜𝑟 is below average (the farm’s labor
is effectively subsidized), the farm chooses to specialize heavily in vegetables, fruits,
and oilseeds: this combined crop allows the farm to take advantage of the relatively
cheaper labor input. As the distortion term grows and the subsidy diminishes, the
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FIGURE 6: Distortion extracted by 1-crop model from multi-crop model data when
productivities are heterogeneous: model illustration

Note. The figure displays the labor friction estimated by the single-product model when the data
is generated by the multi-product model populated with farms that face no true frictions but have
different productivities in rice and vegetables.

farm reduces its output as it is unable to hire as much labor. At a certain point, the
subsidy is so minor that the farm starts growing both crops at the same time. As
the subsidy turns into a tax and labor becomes unattractive relative to land, the farm
changes its specialization to rice: the relatively less labor-intensive crop.

This endogenous adjustment of a farm’s product choice to the distortions it faces
allows the farm to lower its exposure to market frictions. Because traditional single-
product models miss this margin of adjustment, they overstate the underlying dis-
tortions. A modest tax-like labor distortion would cause the farm to lower its labor

output
ratio both in the single- and the multi-product models of misallocation. But in the
multi-product model, the distortion further leads the farm to shift part of its produc-
tion to less labor-intensive crops, lowering the overall labor

output ratio even more. This
endogenous product choice response to a modest underlying friction would be mis-
taken by the single-product farm as evidence of severe underlying frictions. Figure 8
plots the labor distortion estimated by the single-crop model, ̂𝜏𝑓 ,𝑙𝑎𝑏𝑜𝑟, when applied
to observed inputs and outputs generated by the simulated multi-crop model. If
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FIGURE 7: Product choice vs labor distortion: model illustration

Note. The figure illustrates the changing product choice of a farm as the labor friction it faces is varied.

the single-crop model could extract the fundamental friction correctly, its estimate
would lie along the 45∘ line. Instead, the single-crop model significantly overstates
the severity of both tax-like and subsidy-like distortions, and therefore overstates the
cost of misallocation.

SINGLE-PRODUCT MODELS UNDERSTATE TFP DISPERSION. By ignoring heterogene-
ity across products within a single farm, single-crop models miss productivity dif-
ferences between crops that farmers may exploit once frictions are removed.

Suppose that a given farm draws a low productivity in rice, 𝑧1,𝑟𝑖𝑐𝑒 = 𝑧𝐿, and a high
productivity in vegetables, 𝑧2,𝑣𝑒𝑔 = 𝑧𝐻. If the farm faces severe frictions, they may
distort the farm’s product choice so that instead of specializing in vegetables, the farm
also grows a significant quantity of the less productive rice. If the farm is treated as
producing a homogeneous agricultural good, its farm-level TFPwill be some average
𝑧𝐿 < 𝑧𝑀 < 𝑧𝐻. Applying the multi-product model to the farm would show that
if frictions were removed, the farm would specialize in vegetables, raising its farm-
level productivity from 𝑧𝑀 to 𝑧𝐻. Applying a single-product model, however, would
suggest that the farm-level productivity would remain at 𝑧𝑀 even if frictions were
removed, since the single-product model is blind to productivity differences between
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FIGURE 8: Distortion extracted by 1-crop model from multi-crop model data when
distortions are heterogeneous: model illustration

Note. The figure displays the labor friction estimated by the single-productmodel from data generated
by the multi-product model when farms are able to adjust product choice in response to frictions as
in Figure 7.

crops within a single farm. Therefore, the single-product model would understate
the underlying productivity differences within the economy and understate the true
cost of misallocation.

SINGLE-PRODUCT MODELS MISS RETURNS-TO-SCALE HETEROGENEITY. Estimates of
misallocation depend on the returns to scale in the production function. When re-
turns to scale are small, the most productive firms are not able to grow their output
by much even when the distortionary frictions are removed, reducing the gains from
reallocation. Section 6.2 will illustrate the sensitivity of misallocation estimates to the
degree of concavity in the model, of which decreasing returns to scale is one poten-
tial source. Single-product models impose the same level of returns to scale on the
whole economy. But as Section 4.4 showed, we estimate returns to scale to be differ-
ent across products: some, like “vegetables, fruits, and oilseeds”, have significantly
decreasing returns to scale. Others, like rice, have returns to scale that are slightly
decreasing but close to constant. The estimates for wheat, on the other hand, sug-
gest increasing returns to scale. A single-product model will miss the fact that, in
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the event of a reallocation, farmers growing rice and wheat may be able to scale their
production up more easily than vegetable farmers.

Figure 9 illustrates the mechanism. Suppose an economy is populated by two
farms: a farm that has equally high productivity in all crops and faces equally high
frictions in all inputs, and a farm that has equally low productivity in all crops and
faces equally low frictions in all inputs. Consider a single-product model with one
“aggregate” crop and a multi-product model with two crops: “rice” (slightly higher
returns to scale than the “aggregate” crop) and “vegetables, fruits, and oilseeds”
(lower returns to scale than the “aggregate” crop). Once the frictions are removed,
output of all crops goes up in both models due to the reallocation of inputs from the
previously subsidized unproductive farm to the previously taxes productive farm.
However, the magnitudes are different: in the multi-product model, rice responds
more strongly than vegetables due to the higher returns to scale in the production
function of rice, while in the single-product model, the response of the aggregate
crop is in between the two. Moreover, the consumer is able to adjust the consumption
bundle to take advantage of this heterogeneity: themore substitutable different crops
are for the consumer, the more the consumer reallocates consumption toward the
higher returns-to-scale crop in the optimum, maximizing the gains from letting the
most productive farm expand its output. Because the single-product model lacks
this margin of adjustment, it will understate the true cost of misallocation, especially
if crops are substitutable.

6 QUANTITATIVE RESULTS
The preceding section showed that the way underlying distortions affect farm be-
havior and the way these distortions are extracted from observational data are both
altered by the presence of heterogeneous products and multi-product farms. The
present section quantifies the importance of these differences for estimating the ag-
gregate cost of misallocation in the economy.

To estimate the aggregate cost of misallocation, we conduct counterfactual real-
location exercises in the model. Each exercise reduces or completely removes distor-
tions between farms, computes their optimal counterfactual outputs, and aggregates
the output to obtain a counterfactual reallocation output gain. The % difference in
output between the counterfactual exercise and the currently observed one consti-
tutes the headline measure of the aggregate cost of misallocation: it captures the
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FIGURE 9: Efficient output relative to distorted output in multi-product vs single-
product model: model illustration

Note. The figure displays how efficient output (attained when all friction terms are the same between
farms) varies with elasticity of substitution in the single-product (“aggregate” crop) and the multi-
product (“rice” and “veg, frt, oil” crops) model. Efficient output is rescaled relative to current dis-
torted output in each crop.

magnitude of output being lost due to the market frictions currently present in the
economy.

Note that the aggregate input quantities are not changed in the reallocation exer-
cises: only the distortions are. Therefore, any aggregate output gain from reallocation
is due purely to the increase in aggregate TFP. Furthermore, because the idiosyn-
cratic farm-crop-level TFPs are not changed in the counterfactual either, the increase
in aggregate TFP is driven not by any increase in farm-level TFPs but rather by an
improved allocation of existing inputs to the more productive farms.

6.1 BENCHMARK REALLOCATION EXERCISE
In our benchmark reallocation exercise, we equalize all farm-level distortions while
keeping the crop set of each farm restricted to what it is observed growing in the
data. Furthermore, we leave farm-crop-level distortions intact to preserve idiosyn-
cratic product choice motives.
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EQUALIZING DISTORTIONS. We impose equality of farm-input-level distortions:
𝜏𝑓 ,𝑔 = ̄𝜏𝑔 ∀𝑔, 𝜆𝑓 = 𝜆̄. This equalization effectively makes input markets frictionless
across farms. The levels of average distortions are fixed by the general equilibrium
conditions. We leave the farm-input-crop-level distortions 𝜏𝑓 ,𝑔,𝑖, 𝜏𝑓 ,𝑙,𝑖 at their current
levels to allow the model to capture idiosyncratic product choice motives, as will be
discussed below.14

KEEPING CROP SETS FIXED. In this exercise, farmers will change the total quantity
purchased of each input as well as the allocation of inputs between the crops they
grow. However, farmers are not allowed to change the set of crops they are growing:
if a particular farm is observed growing only rice and wheat in the data, it will not be
allowed to start growing oilseeds in the counterfactual. This restriction permits us to
only use productivities and distortions that are extracted directly from the data: we
don’t need tomake any assumptions onwhat each farm’s counterfactual productivity
or farm-crop distortion in an unobserved crop would be.

PRESERVING IDIOSYNCRATIC PRODUCT CHOICEMOTIVES. Themodel of a profit-maximizing
farm is a simplification. Real-world farmers may choose to grow a particular crop for
reasons other than pure profit maximization based on observed total factor produc-
tivity and input costs. For instance, semi-subsistence farmers may prefer a crop that
is less profitable if sold on the market but serves their family’s dietary needs bet-
ter. The model is blind to these motives and would explain this observed preference
for a non-profit-maximizing crop with a combination of an inefficient crop set and
farm-input-crop-level distortions 𝜏𝑓 ,𝑔,𝑖 and 𝜏𝑓 ,𝑙,𝑖 making inputs relatively cheaper for
the subsistence crop. Therefore, allowing farmers to change crop sets and equalize
farm-input-crop-level distortions may result in the model overstating the true costs
of misallocation as it would overstate the degree to which farmers are likely to switch
to profit-maximizing crops. Avoiding this is the main reason we elect not to equalize
farm-input-crop-level distortions and the second reason we keep crop sets fixed in
the benchmark counterfactual exercises. Even though the model does not explicitly

14. Aragón, Restuccia, and Rud (2022) argue that estimates of agricultural misallocation are more
reliable when the unit of analysis is a farm rather than a plot. We rely on plot-level data for produc-
tion function identification, but in our misallocation exercise, we use variation across plots within a
farm only when they produce different crops. Furthermore, leaving farm-input-crop-level distortions
intact ensures that any remaining unexplained variation across plots is not interpreted as a source of
misallocation, effectively making the exercise capture misallocation between farms and crops, but not
between plots.
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include subsistence and other idiosyncratic product choice motives, making these
two restrictions makes the counterfactual reallocation exercise only capture the out-
put gain from efficient inputmarkets allowing farmers tomore efficiently growwhat-
ever they currently prefer, without making unrealistic predictions on how they could
“improve” their existing product preferences.

SEASONS. The treatment of seasons in the model is irrelevant for its ability to re-
produce the observed allocation but becomes important for counterfactual exercises.
If model farms 𝑓 , mapped to farm-seasons in the data, are all bundled together into
the same economy, a naive counterfactual reallocation may feature double-booking
of inputs: land and labor inputs from less productive seasons may be reallocated
to the more productive one, implying that a single physical piece of land may be
allocated to three different uses in a single season and to no uses in the other two
seasons. To preclude this nonsensical possibility, we split the model economy into
three sub-economies by season, and conduct counterfactual reallocations onlywithin
each season: this ensures that no inputs are reallocated across seasons. The aggre-
gate counterfactual output in each exercise is then a summation of three seasonal
outputs.

COMPARINGMULTI-PRODUCT AND SINGLE-PRODUCTMODELS. To understand the ef-
fect of the product choice channel on aggregate productivity, we compare the es-
timated reallocation gain between the multi-product farm model and a traditional
single-product farm model. The single-product farm model uses inputs and out-
puts measured at the farm level rather than the farm-crop level. Consequently, the
single-product model uses a single production function with estimated “aggregate”
elasticities from Figure 3.

6.2 COST OF MISALLOCATION

BENCHMARK REALLOCATION. The “benchmark” row of Table 2 shows the results
of the benchmark counterfactual reallocation exercise. According to themulti-product
model, allowing input markets to operate efficiently would raise the aggregate out-
put of India’s agricultural sector by 294%.15 Repeating the same exercise in the single-
productmodel promises a still formidable but smaller gain of 212%. For our preferred
15. Enormous costs of misallocation in the agricultural sectors of developing countries have been

estimated previously, most notably in Chen, Restuccia, and Santaeulalia-Llopis (2022).
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calibration and exercise, the single-product model understates the cost of misalloca-
tion by 28% (or 82 percentage points of current output).

TABLE 2: Reallocation exercises

Gain Gain (1 product) Error (1 product)
benchmark 294% 212 % -28%
best state 35% 45 % 26%
land only 30% 36 % 20%
complete 311% 212 % -32%
Note. Column “Gain” displays the % agricultural output gain from each
counterfactual exercise, estimated using the multi-product model. Col-
umn “Gain (1 product)” displays the same but using the single-crop
model. Column “Error (1 product)” displays the relative difference be-
tween the two: positive values indicate an overestimation of reallocation
gain by the single-product model. “Benchmark” exercise equalizes all fric-
tions between farms. “Best state” exercise reduces population-level dis-
tortion variances to match those of the least-distorted state. “Land only”
exercise equalizes land frictions between farms. “Complete” exercise ad-
ditionally equalizes farm-crop frictions.

“BEST STATE” REALLOCATION. The benchmark exercise above predicts the effects
of a blanket removal of distortions across farms. Such a removal is likely to be unattain-
able in practice as misallocation of inputs is significant even in developed countries.
Furthermore, it may not even be desirable as some of the frictions picked up by the
model likely reflect model misspecification rather than truly malign distortions.16

Motivated by this, we conduct a conservative exercise that improves the input allo-
cation not to the perfectly efficient level but to the level of the least-distorted Indian
state. We rank Indian states by the variance of log composite distortion 𝑑𝑖𝑠𝑡𝑓 ,𝑖 dis-
cussed in Section 5.4 and identify the “least-distorted state”, which is TamilNadu. We
then rescale the distortions faced by individual farmers to equalize the population-
level variance of each friction typewith the state-level variance in Tamil Nadu.17 This

16. Some of the innocuous causes of measured frictions explored in the literature are mismeasure-
ment, late season productivity shocks, and dynamic input adjustment costs (Bils, Klenow, and Ruane
2021; Gollin and Udry 2021; Asker, Collard-Wexler, and De Loecker 2014).
17. Variances are computed and equalized separately for five types of distortions: 𝜆̂𝑓 , 𝜏𝑓 ,𝑔 (separately

for each 𝑔 = 1, 2), 𝜏𝑓 ,𝑔,𝑖, 𝜏𝑓 ,𝑙,𝑖. Letting 𝑉𝑑,𝑠 be the variance of log distortion of type 𝑑 in the least
distorted state and 𝑉̂𝑑 be the corresponding population variance, each distortion is rescaled to 𝜏𝑛𝑒𝑤

𝑑,𝑓 =

exp(√ 𝑉𝑑,𝑠

𝑉̂𝑑
⋅ log𝜏𝑑,𝑓 ).
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“best state” exercise promises a 35% gain in agricultural TFP if the severity of distor-
tions throughout India is brought down to the levels of its least-distorted state. In
this case, the single-product model overstates the gain by 26% or 10 p.p.

ALTERNATIVE REALLOCATIONS. Our benchmark reallocation removes estimated
frictions in all three modeled input markets: land, labor, and intermediates. The
agricultural misallocation literature, however, has mainly focused on institutional
frictions in the land market. In the alternative “land only” reallocation, we remove
land frictions between farms (equalize 𝜆𝑓 ) but keep their labor and intermediates
frictions in place (𝜏𝑓 ,𝑔 stay at current levels). The expected reallocation gain in this
case is far more modest but still sizeable: 30% of current agricultural output. The
single-product model estimates a slightly higher reallocation gain of 36%: in contrast
to the benchmark exercise, the single-product model overstates the potential gain in
this incomplete reallocation by 20% (or 5 p.p.). Note also that Bolhuis, Rachapalli,
andRestuccia (2021) arrived at a very similar gain of 38% from efficiently reallocating
land in India, using a conventional single-product model.

The “land only” results are instructive also because of the gap between them and
the benchmark exercise: efficiently reallocating all three inputs ismuchmore effective
than reallocating land alone, implying that labor and input market frictions impose
a significant drag on Indian agricultural productivity.18

The benchmark reallocation removes frictions between farms but keeps farm-
crop-level distortions intact in order to preserve any idiosyncratic product choice
motives that the model does not explicitly capture. However, some of the farm-crop-
level 𝜏𝑓 ,𝑔,𝑖 distortions are likely to reflect malign frictions rather than benign unmod-
eled motives. To place an upper bound on their importance, we conduct an alter-
native “complete” reallocation that equalizes these farm-crop-level frictions. Their
contribution is relatively minor, increasing the reallocation gain from the 294% of the
benchmark exercise to 311%. Because the single-productmodel is completely blind to
the within-farm variation picked up by these frictions, its underestimation becomes
even more severe, going from 28% to 32%.

SENSITIVITYOFMISALLOCATION ESTIMATES. Themulti-productmodel has two free
parameters: additional concavity parameter 𝜂 and elasticity of substitution between

18. SeeAndrewD. Foster andMark R. Rosenzweig (2022) for an exploration of labormarket frictions
in India.
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crops 𝜎 . Figure 10 displays the sensitivity of the benchmark reallocation exercise
outcomes to alternative parameter values, centered on the benchmark calibration.

(A) Reallocation gain, % (B) Single-product model error, %

Note. Panel (A) displays estimated reallocation gain using the multi-product model at each set of
parameters 𝜎 , 𝜂, expressed as a ratio (1 = no gain). Panel (B) displays the error in the single-product
model’s reallocation gain ratio relative to the one displayed in Panel (A): positive values denote the
overstatement ofmisallocation by the single-productmodel. The benchmark calibration is highlighted
in the center.

FIGURE 10: Reallocation gain and single-product model error for alternative parame-
terizations

Panel (A) of Figure 10 shows how the reallocation gain predicted by the multi-
product model changes with the two parameters. Our preferred calibration, dis-
cussed in Section 5.4, and its 294% reallocation gain is highlighted. The figure il-
lustrates how sensitive misallocation estimates are to the degree of concavity in the
model. The smaller the additional concavity (higher 𝜂), or the elasticity of substi-
tution between crops (𝜎), the greater the reallocation gain predicted by the model.
Productive farms grow in the efficient reallocation, but the lower the concavity, the
greater their optimal size, driving up the benefits of reallocating inputs to the most
productive farms. The figure tells a cautionary tale against basing any analysis of
misallocation on a single parameterization: models of misallocation used in the lit-
erature are highly sensitive to the extent of concavity, whether it is driven by market
power, decreasing returns to in production, or some other channel. This is also the
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reasonwhy in Section 5.4we elected not to calibrate 𝜂 to somemoment in the data but
instead to pick the value that implies the most conservative underlying distribution
of frictions.

Panel (B) of Figure 10 shows the response in the single-product model’s error
to the changing parameter values. While at the benchmark calibration, the single-
product model understates the reallocation gain by 28% (or 82 p.p.), neither the
magnitude nor the sign of its error is set in stone. At some alternative calibrations, the
single-product model overstates the reallocation gain instead, as the contribution of
understating mechanisms diminishes. For instance, the less substitutable the crops
are (the lower the 𝜎), the smaller is the ability of the consumer to reallocate toward
high returns-to-scale crops in themulti-productmodel (see Figure 9) and the smaller
is the single-product model’s understatement of misallocation.

These results imply that accounting for product heterogeneity and product choice
in estimating misallocation is not a matter of applying a simple correction to single-
product estimates: the sign and the magnitude of the needed correction depend on
the exercise and calibration used by the researchers.

ROLE OF SEASONS AND STATES. Finally, we conduct two additional sets of ex-
ercises to clarify the role of seasons and states. Appendix Table A.4 repeats the
counterfactual reallocation exercises above but treats different Indian states as sepa-
rate economies, preventing inputs from moving across states in a reallocation. This
“within state” exercise provides another conservative take on the extent of misallo-
cation in Indian agriculture. Reallocation gains decrease substantially but remain
significant: the benchmark reallocation promises a 107% productivity gain in the
multi-product model, with the single-product model overstating this gain by 15%.
Appendix Table A.5 judges the significance of our decision to prohibit input reallo-
cation across seasons in the main exercises: this “no split by season” exercise allows
inputs, even land, to be moved between seasons in the counterfactual reallocation.
Estimated reallocation gains do rise in this case, but not drastically so.

6.3 MECHANISM DECOMPOSITION
Section 5.5 discussed several prominent mechanisms that make the single-product
model’s estimates ofmisallocation diverge from those of themulti-productmodel. In
this section, we decompose the difference between the two models identified above
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into contributions by each of these mechanisms.

EXERCISES. The mechanisms are conceptual (rather than driven by a single pa-
rameter) and highly interacting, and so do not allow a clean decomposition of the
single-product model’s error into additive components. However, we can get a sense
of the contribution of each mechanism through a series of exercises.

To evaluate the extent to which the single-product model misinterprets prod-
uct heterogeneity as frictions, we take the counterfactual allocation produced by the
multi-product model once frictions are removed and use the single-product model to
extract frictions from it as if it were real data. Thenwe conduct an additional counter-
factual reallocation, removing these “fake” frictions from the single-product model.
Because the fake frictions reflect only the fact that the single-product model misinter-
prets production function heterogeneity as evidence of frictions even when there are
none, the additional reallocation gain obtained in this exercise provides an estimate
of this mechanism’s contribution to the single-product model’s overall error.

The endogenous product choice mechanism can be shut down by precluding
farms from changing their product sets and the relative allocation of inputs across
crops. The former is already prohibited in the benchmark allocation (see Section 6.1).
The latter can be shut down by solving an auxiliarymodel in which farms can change
the total quantity of each input hired but not the allocation of this quantity between
crops: product shares are fixed at exogenously given levels. This model is described
in Appendix D. To get an estimate of the endogenous product choice response to
frictions currently present in the economy, we re-introduce currently observed fric-
tions into the counterfactual “efficient” economy, but don’t let farmers change their
product choice from the counterfactual ratios. Comparing the predicted output in
this case to the observed actual output isolates the contribution of the endogenous
mechanism.

The TFP dispersion mechanism can be shut down by applying the single-product
model to current data in which all farm-season-crop combinations are treated as sep-
arate farm-seasons, effectively turning it from a farm-level model into a plot-level
model. In this case, the single-product model still applies the same production func-
tion to all farms but it sees a more fine-grained distribution of productivities.19

19. We artificially preserve the farm-crop-level frictions 𝜏𝑓 ,𝑔,𝑖, 𝜏𝑚,𝑖 when treating farm-crop-level
data as farm-level data: otherwise the farm-crop-level frictions would be interpreted as farm-level
frictions in this exercise and dropped, leading to an unfair comparison.
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We isolate the contribution of the single-product model’s blindness to returns-to-
scale heterogeneity by shutting this heterogeneity down. We conduct an auxiliary
counterfactual reallocation in the multi-product model after equalizing the returns
to scale in every product’s production function to those in the aggregate production
function used by the single-productmodel. Elasticities of all three inputs are rescaled
accordingly, to preserve their relative quantities. The difference in reallocation gain
between this auxiliary exercise and the benchmark exercise indicates the contribution
of returns-to-scale heterogeneity to the single-product model’s error.

DECOMPOSITION OF THE BENCHMARK REALLOCATION. Figure 11 presents the con-
tribution of each of the three mechanisms (excluding the TFP dispersion mechanism
since it doesn’t apply to the benchmark exercise) to the single-product model’s mis-
allocation error in the benchmark exercise, in percentage points. The contributions
are visualized sequentially and additively, but note that the sum of the three mecha-
nisms does not add up to the 82 percentage point error exactly, since the three iden-
tified mechanisms are neither exhaustive nor independent of one another. Still, the
decomposition provides a useful overview of their relative importance.

The fact that the single-product model can treat efficient product heterogeneity
as evidence of non-existing frictions leads the model to overstate misallocation by 9
p.p. The endogenous product choicemechanismmakes aminor 0.5 p.p. contribution
to the model’s overstatement.20 The understatement by the single-product model
stemming from its blindness towithin-farmTFPdispersion chips 3 p.p of this error. A
far bigger understatement, however, is caused by the single-product model ignoring
the heterogeneous returns to scale between products, which leads it to understate
misallocation by 93 p.p.

DECOMPOSITIONOF THE “BEST STATE” REALLOCATION. Figure 12 presents themech-
anism decomposition for the “best state” exercise, in which frictions across India are
not removed but simply reduced to the levels of the least-distorted state. The effects
of this modest reallocation depend less on the ability of most productive farmers
to greatly expand their output, and thus the “returns to scale” channel is far less
prominent, allowing the “product heterogeneity as frictions” channel to dominate.

20. Note that in this exercise, the endogenous product choice mechanism being identified works
only through the relative quantities of crops grown by the farm rather than through the choice of
which products it grows, since the latter is fixed at its current level.
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FIGURE 11: Mechanism contributions to the single-product model’s misallocation er-
ror, benchmark reallocation

In this reallocation, the single-product model’s biggest error is mistaking heteroge-
neous product choice for evidence of frictions, leading it to overstate the cost of mis-
allocation on net, as Table 2 showed.

SINGLE-PRODUCTMODELOVERSTATESCONSERVATIVEREALLOCATIONS, UNDERSTATES
EXPANSIVEONES. Thedifference between the “benchmark” reallocation and the “best
state” reallocation in the single-product model’s error and its decomposition into
mechanism extends more broadly. We conduct a series of reallocation exercises in
which the frictions present in the economy are progressively rescaled to smaller and
smaller values. Figure 13 presents the resulting single-product model error and its
decomposition at select points into the four mechanisms. The exercise that should
be preferred depends on one’s interpretation of the causes of observed dispersion in
the data. If most of the dispersion extracted by the model is seen as driven by be-
nign mechanisms and not reflecting true malign frictions, then exercises that treat a
smaller fraction of this dispersion asmisallocative frictions to be removed and achieve
a correspondingly lower overall reallocation gain should be preferred as a measure
of misallocation. In this case, the single-product model tends to overstate the cost of
misallocation, driven by its treatment of benign product heterogeneity as evidence
of frictions. If, on the other hand, most extracted dispersion is seen as evidence of



MISALLOCATION AND PRODUCT CHOICE 39

FIGURE 12: Mechanism contributions to the single-product model’s misallocation er-
ror, “best state” reallocation

true malign frictions, then exercises that removemost of those frictions and achieve a
correspondingly high reallocation gain should be preferred. In this case, the single-
product model tends to understate the cost of misallocation: whenmisallocative fric-
tions are seen as significant, correctly capturing the returns to scale heterogeneity is
crucial for predicting the ability of firms to expand output once frictions are removed,
and the single-product model understates this ability.

7 CONCLUSION
Misallocation of inputs between firms imposes a significant drag on the productivity
of developing countries. The cost of misallocation in agriculture is especially large
and contributes to explaining the enormous agricultural productivity gap between
developed and low-income countries.

Estimates of misallocation in non-agricultural sectors have been limited by the
treatment of all firms as producing only a single good or multiple homogeneous
goods. Estimates of agricultural misallocation have been further limited by assum-
ing that all farms produce the same agricultural product. We use Indian farm-level
data to estimate production functions for individual crops and find that their input
elasticities and returns to scale are meaningfully heterogeneous for the purposes of
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FIGURE 13: Single-product model error and decomposition for increasingly complete
reallocations

Note. The figure presents the single-product model reallocation gain error (in relative % terms) in
a series of reallocation exercises in which frictions are rescaled to progressively smaller values. Ex-
ercises are arranged on the x-axis by their reallocation gain as a share of maximum attainable gain
(when all frictions are removed). Single-product model error at three select points is decomposed
into four mechanisms, akin to Figures 11, 12, but rescaled to relative % terms. Mechanisms’ additive
contributions do not necessarily add up exactly to the overall error.

estimating misallocation.
We build a model of multi-product firms choosing among products with het-

erogeneous production functions. We find that conventional single-product mod-
els misestimate the cost of misallocation in several ways, some of which push the
single-product models to overstate misallocation while others push them to under-
state it. The net error of a single-product model depends on the exercise of interest
and chosen calibration. This implies that accounting for product heterogeneity and
multi-product behavior is not a matter of applying a simple correction to a single-
product model’s output. When most observed dispersion between firms is inter-
preted to be driven by benign mechanisms, the remaining real misallocation tends
to be overstated by the conventional single-product model due to its treatment of
product heterogeneity as evidence of frictions. When, on the other hand, most ob-
served dispersion is seen to reflect real frictions that ought to be removed, the single-
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product model understates the significant real misallocation, driven by its blindness
to heterogeneity in firms’ ability to expand output.

We conducted our analysis on Indian farm-level data, since agricultural micro-
level data provides several advantages in exploring the interplay of product hetero-
geneity and misallocation. However, the model developed in the paper—and the
mechanisms it illustrates—would apply equally to non-agricultural firms. Future re-
search can extend this analysis from agriculture to non-agriculture by applying the
model to firm-product-level datasets.

Another future direction is to consider the role of dynamics in the interaction
of product choice and misallocation.21 Crop rotation can lead to input choices that
appear inefficient in the short run but preserve the long-run productivity of land.
Moreover, the heterogeneous suitability of different crops to different seasons can
produce—when input rental markets are underdeveloped—input choices that ap-
pear inefficient in one season but are made to have the input in place for the next
season. Capturing product choice complementarities across seasons and even years
empirically and theoretically is thus a fruitful avenue of further research.

21. Dynamic choices have been shown to be important formisallocation using single-productmodels
by, for instance, Asker, Collard-Wexler, and De Loecker (2014) and Kehrig and Vincent (2019).
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APPENDIX

A ADDITIONAL FIGURES AND TABLES

FIGURE A.1: Top 10 crops by % of aggregate output
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TABLE A.1: Production function estimates

(1) (2) (3) (4) (5) (6)

Aggregate Rice Wheat Other Cereals Pulses Veg, Frt, Oil

Land 0.427 0.511 0.414 0.407 0.379 0.330
(0.031) (0.021) (0.032) (0.034) (0.060) (0.035)

Labor 0.189 0.161 0.122 0.248 0.316 0.430
(0.031) (0.037) (0.036) (0.058) (0.074) (0.064)

Intermediates 0.351 0.307 0.517 0.245 0.255 0.127
(0.041) (0.033) (0.040) (0.046) (0.076) (0.052)

Observations 14,705 4,807 3,566 2,779 1,128 2,338
𝑅2 0.624 0.742 0.713 0.590 0.417 0.572
Village FEs Y Y Y Y Y Y
Season FEs Y Y Y Y Y Y

First Stage: F statistics
Land 77.0 62.0 40.3 37.8 15.7 19.3
Labor 49.3 34.7 17.7 25.2 12.9 14.8
Intermediates 35.8 31.7 21.5 19.9 8.9 11.8
K-Paap Wald F statistic 51.1 40.4 16.0 30.8 12.4 12.7

Note. Each column represents a separate regression. We use 2SLS to estimate the coefficients, using
instruments described in Section 4.2. Robust standard errors are presented in parentheses. The “Other
Cereals” group include barley, maize, jawar, bajra, ragi, and millets. The “Veg, frt, oil” group includes
vegetables, fruits, oilseeds, and fiber crops. The “Aggregate” column pools all crops together. In panel
B of the table, we report the F-stat from the first stage regression for each input and each regression
separately. We also report the joint F-stat at the bottom line of the table.
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TABLE A.2: Estimate of 𝜎

(1) (2)
log 𝑠ℎ,𝑖 log 𝑝ℎ,𝑖

𝜎 1.699
log 𝑝ℎ,𝑖 -0.699

(0.067)
Elevation × rain -0.004

(0.000)
Ruggedness × rain 0.016

(0.001)
Pucca roads availability -0.023

(0.001)
Observations 40,833 40,833
Kleibergen-Paap F stat 230.9

Note. The table presents the estimation of Equation 16 using
2SLS. Column 1 presents second stage results and column 2
presents first stage results. Elevation, ruggedness, rain, and
availability of pucca roads are village-level measures. “Pucca
roads” are all-weather roads made of concrete and tar. Stan-
dard errors are clustered at the household level. The “𝜎” row
shows the value of 𝜎 implied by 𝛽1, the coefficient on log𝑝ℎ,𝑖.



MISALLOCATION AND PRODUCT CHOICE 49

TABLE A.3: Crop list

Rice Wheat Other Cereals Pulses Oilseeds, Fruits and Vegetables
Barley Black gram Oilseeds Vegetables Fruits /Condiments
Maize Green peas Sesame Ash gourd Mango
Sorghum Pigeon peas Groundnut Beet root Papaya
Pearl millet Horse gram Castor Bitter gourd Grapes
Finger millet Cowpea Sunflower Bottle gourd Plum
Others Kidney bean Niger Eggplant Cardamom

Lentil Soybean Board bean Chilli
Chickpeas Safflower Cabbage Cumin
Others Rapseed Cauliflower Dill seed

Linseed Carrot Indian mustard
Others Potato Other

Cucumber
Peas
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TABLE A.4: Reallocation exercises: within state

Gain Gain (1 product) Error (1 product)
benchmark 107% 124 % 15%
land only 20% 26 % 29%
complete 122% 124 % 1%
Note. Unlike the main exercises in Table 2, the present exercises only re-
allocate inputs within each state: effectively, separate states are treated as
separate economies. The nomenclature follows that of Table 2.

TABLE A.5: Reallocation exercises: no split by season

Gain Gain (1 product) Error (1 product)
benchmark 314% 260 % -17%
best state 41% 46 % 11%
land only 30% 36 % 19%
complete 330% 260 % -21%
Note. Unlike the main exercises in Table 2, the present exercises reallo-
cate inputs across seasons: separate seasons are not treated as separate
economies. The nomenclature follows that of Table 2.

B ADDITIONAL CONCAVITY MECHANISMS
Additional concavity governed by the parameter 𝜂, described in Section 5.1, is a
reduced-form stand-in for multiple mechanisms that could incentivize farmers to
produce multiple crops at once.

In this section, we explore two such mechanisms explicitly. Both generate first-
order conditions that are functionally equivalent to those in the original problem. At
the same time, differentmicro-foundations of 𝜂 may carrywith themdifferent natural
ways of aggregating crops and clearing markets at the aggregate level, generating
slightly different general equilibrium implications.

B.1 SUBSISTENCE
Suppose that instead of operating a profit-maximizing farm, the household is oper-
ating a subsistence farm and consuming its output. The farmer is minimizing costs
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of providing utility constant elasticity of substitution utility 𝑈 to the family:

𝑈 = ⎛⎜
⎝

∑
𝑖

𝜑𝑖𝑦
𝜂
𝑓 ,𝑖

⎞⎟
⎠

1
𝜂

In this interpretation, the farmer has an incentive to mix crops in order to provide
a diverse diet for the family. The resulting first-order conditions are equivalent to
those in Section 5.1.

B.2 MARKET POWER
Suppose that instead of selling the harvest at a perfectly competitive market, the
farmer has somemarket power in amonopolistically competitive market. This can be
represented by introducing an intermediate crop aggregator operating within each
crop 𝑖’s market, which buys farms’ varieties 𝑦𝑓 ,𝑖 of this crop at 𝑝𝑓 ,𝑖 and sells the com-
bined 𝑖 product to the consumer at price 𝑃𝑖. The aggregator uses the following pro-
duction function:

𝑌𝑖 = ⎛⎜⎜
⎝

∑
𝑓

𝑦𝜂
𝑓 ,𝑖

⎞⎟⎟
⎠

1
𝜂

This generates downward-sloping demand for farm 𝑓 ’s variety of crop 𝑖, creating
an incentive for the farmer to mix crops (to avoid excessive price drops in any one
crop). The resulting first-order conditions are equivalent to those in Section 5.1

C MODEL SOLUTION AND COMPUTATIONAL ALGORITHM

C.1 SOLVING THE PROBLEM OF A SINGLE FARM
For 𝑁 products, there are 2𝑁 − 1 non-empty product sets that each farm could be
producing. Let 𝐼𝑓 be the set of products in a single such combination, s.t. 𝑦𝑓 ,𝑖 >
0 ∀𝑖 ∈ 𝐼𝑓 and 𝑦𝑓 ,𝑖 = 0 ∀𝑖 ∉ 𝐼𝑓 . If 𝜔 > 0, the profit-maximizing product set might have
𝑦𝑓 ,𝑖 = 0 for some crops. Each combination has to be solved separately, and then their
profits are compared to pick the best one.

For each product set 𝐼𝑓 , the following non-linear equation needs to be solved for
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the shadow cost of land 𝜆𝑓 :

∑
𝑖∈𝐼𝑓

𝜆
𝜂 ∑𝑔 𝛼𝑔,𝑖−1

1−𝜂 ∑𝑔 𝛼𝑔,𝑖−𝜂𝛾𝑖
𝑓

⎛⎜⎜
⎝

(𝑝𝑖𝑧𝑓 ,𝑖)𝜂 ⋅ 𝜂 ⋅ Π𝑔 ⎛⎜
⎝

𝛼𝑔,𝑖
𝑟𝑔𝜏𝑓 ,𝑔𝜏𝑓 ,𝑔,𝑖

⎞⎟
⎠

𝜂𝛼𝑔,𝑖

( 𝛾𝑖
𝜏𝑙,𝑖

)
1−𝜂 ∑𝑔 𝛼𝑔,𝑖⎞⎟⎟

⎠

1
1−𝜂 ∑𝑔 𝛼𝑔,𝑖−𝜂𝛾𝑖

𝜏𝑙,𝑖 = 𝐿𝑓

(C.1)
Each term within the sum is decreasing in 𝜆𝑓 . Using this fact, the following

bounds can be derived on 𝜆𝑓 that solves the condition, simplifying the numerical
cost. For each crop, define:

𝐴𝑖 = ⎛⎜⎜
⎝

(𝑝𝑖𝑧𝑓 ,𝑖)𝜂 ⋅ 𝜂 ⋅ Π𝑔 ⎛⎜
⎝

𝛼𝑔,𝑖
𝑟𝑔𝜏𝑓 ,𝑔𝜏𝑓 ,𝑔,𝑖

⎞⎟
⎠

𝜂𝛼𝑔,𝑖

( 𝛾𝑖
𝜏𝑙,𝑖

)
1−𝜂 ∑𝑔 𝛼𝑔,𝑖⎞⎟⎟

⎠

1
1−𝜂 ∑𝑔 𝛼𝑔,𝑖−𝜂𝛾𝑖

𝜏𝑙,𝑖 (C.2)

Then the upper and lower bounds on 𝜆𝑓 are

𝜆𝑈𝐵
𝑓 = max

𝑖
⎛⎜
⎝

𝐿𝑓
|𝐼𝑓 | ⋅ 𝐴𝑖

⎞⎟
⎠

1−𝜂 ∑𝑔 𝛼𝑔,𝑖−𝜂𝛾𝑖
𝜂 ∑𝑔 𝛼𝑔,𝑖−1

(C.3)

𝜆𝐿𝐵
𝑓 = min

𝑖
⎛⎜
⎝

𝐿𝑓
|𝐼𝑓 | ⋅ 𝐴𝑖

⎞⎟
⎠

1−𝜂 ∑𝑔 𝛼𝑔,𝑖−𝜂𝛾𝑖
𝜂 ∑𝑔 𝛼𝑔,𝑖−1

(C.4)

Once the 𝜆𝑓 for this product set is known, input choices for products within 𝐼𝑓 can
be obtained from:

𝑥𝑓 ,ℎ,𝑖 =
𝛼ℎ,𝑖

𝑟ℎ𝜏𝑓 ,ℎ𝜏𝑓 ,ℎ,𝑖
⎛⎜
⎝

(𝑝𝑖𝑧𝑓 ,𝑖)𝜂 ⋅ 𝜂 ⋅ Π𝑔 ⎛⎜
⎝

𝛼𝑔,𝑖
𝑟𝑔𝜏𝑓 ,𝑔𝜏𝑓 ,𝑔,𝑖

⎞⎟
⎠

𝜂𝛼𝑔,𝑖
⎛⎜
⎝

𝛾𝑖
𝜆𝑓 𝜏𝑙,𝑖

⎞⎟
⎠

𝜂𝛾𝑖
⎞⎟
⎠

1
1−∑𝑔 𝜂𝛼𝑔,𝑖−𝜂𝛾𝑖

(C.5)

𝑙𝑓 ,𝑖 = ⎛⎜⎜
⎝

(𝑝𝑖𝑧𝑓 ,𝑖)𝜂 ⋅ 𝜂 ⋅ Π𝑔 ⎛⎜
⎝

𝛼𝑔,𝑖
𝑟𝑔𝜏𝑓 ,𝑔𝜏𝑓 ,𝑔,𝑖

⎞⎟
⎠

𝜂𝛼𝑔,𝑖
⎛⎜
⎝

𝛾𝑖
𝜆𝑓 𝜏𝑙,𝑖

⎞⎟
⎠

1−𝜂 ∑𝑔 𝛼𝑔,𝑖⎞⎟⎟
⎠

1
1−𝜂 ∑𝑔 𝛼𝑔,𝑖−𝜂𝛾𝑖

(C.6)

Set 𝑥𝑓 ,ℎ,𝑖 = 𝑙𝑓 ,𝑖 = 0 ∀𝑖 ∉ 𝐼𝑓 .
With input choices computed, the profit for this product set can be evaluated us-

ing Equation 2. Iterate over 2𝑁 − 1 possible product sets and choose the product set
yielding the highest profit.
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C.2 SOLVING FOR THE GENERAL EQUILIBRIUM
Merge consumer’s product demands, farms’ input demands, farms’ optimal output,
and market clearing conditions to obtain market clearing conditions in terms of fun-
damentals, shadow costs of land 𝜆𝑓 , goods prices 𝑝𝑖, inputs prices 𝑥𝑔, and farms’
product sets 𝐼𝑓 (letting the set of farms producing each product to be denoted by 𝐹𝑖):

∑
𝑓

∑
𝑖∈𝐼𝑓

((𝑝𝑖𝑧𝑓 ,𝑖)𝜂 ⋅ 𝜂 ⋅ Π𝑔 ⎛⎜
⎝

𝛼𝑔,𝑖
𝑟𝑔𝜏𝑓 ,𝑔𝜏𝑓 ,𝑔,𝑖

⎞⎟
⎠

𝜂𝛼𝑔,𝑖

⋅ ⎛⎜
⎝

𝛾𝑖
𝜆𝑓 𝜏𝑓 ,𝑙,𝑖

⎞⎟
⎠

1−𝜂 ∑𝑔 𝛼𝑔,𝑖

)
1

1−𝜂 ∑𝑔 𝛼𝑔,𝑖−𝜂𝛾𝑖
= 𝐿𝑎𝑔𝑔 (C.7)

∑
𝑓

∑
𝑖∈𝐼𝑓

𝛼ℎ,𝑖
𝑟ℎ𝜏𝑓 ,ℎ𝜏𝑓 ,ℎ,𝑖

((𝑝𝑖𝑧𝑓 ,𝑖)𝜂 ⋅ 𝜂 ⋅ Π𝑔 ⎛⎜
⎝

𝛼𝑔,𝑖
𝑟𝑔𝜏𝑓 ,𝑔𝜏𝑓 ,𝑔,𝑖

⎞⎟
⎠

𝜂𝛼𝑔,𝑖
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⎝

𝛾𝑖
𝜆𝑓 𝜏𝑙,𝑖

⎞⎟
⎠

𝜂𝛾𝑖

)
1

1−𝜂 ∑𝑔 𝛼𝑔,𝑖−𝜂𝛾𝑖
= 𝑋𝑎𝑔𝑔

ℎ (C.8)

𝑝𝑖 = (𝜑−𝜎
𝑖

∑𝑗 𝜑𝜎
𝑗 𝑝1−𝜎

𝑗

∑𝑗 𝑝𝑗 ∑𝑓 ∈𝐹𝑗
𝑦𝑓 ,𝑗

⋅ ∑
𝑓 ∈𝐹𝑖

⎛⎜
⎝

𝜂∑𝑔 𝛼𝑔,𝑖+𝛾𝑖𝑧𝑓 ,𝑖Π𝑔 ⎡⎢
⎣
⎛⎜
⎝

𝛼𝑔,𝑖
𝑟𝑔𝜏𝑓 ,𝑔𝜏𝑓 ,𝑔,𝑖

⎞⎟
⎠

𝛼𝑔,𝑖
⎤⎥
⎦

⎛⎜
⎝

𝛾𝑖
𝜆𝑓 𝜏𝑓 ,𝑙,𝑖

⎞⎟
⎠

𝛾𝑖
⎞⎟
⎠

1
1−𝜂 ∑𝑔 𝛼𝑔,𝑖−𝜂𝛾𝑖

)

1−𝜂 ∑𝑔 𝛼𝑔,𝑖−𝜂𝛾𝑖
(1−𝜂 ∑𝑔 𝛼𝑔,𝑖−𝜂𝛾𝑖)(1−𝜎)−1

(C.9)

The 𝑝𝑖 condition can be simplified in two ways, to abstract from its dependence
on all other goods’ prices 𝑝𝑗. First, the price level can be normalized: ∑𝑗 𝜑𝜎

𝑗 𝑝1−𝜎
𝑗 =

1. Second, the nominal output can be substituted with a variable 𝑌𝑛𝑜𝑚, adding its
identity to the list of market-clearing conditions:

𝑌𝑛𝑜𝑚 = ∑
𝑗

𝑝𝑗 ∑
𝑓 ∈𝐹𝑗

𝑦𝑓 ,𝑗 (C.10)
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SPLITTING DISTORTIONS AND ENSURING THE CURRENT ALLOCATION IS CONSISTENT
WITH GENERAL EQUILIBRIUM. Once frictions have been extracted from the data (Sec-
tion 5.3), additional steps need to be taken to ensure that the model representation
of the current allocation is in general equilibrium.

Splitting 𝑟𝑔𝜏𝑓 ,𝑔𝜏𝑓 ,𝑔,𝑖 = 𝑚𝑟𝑝𝑔𝑓 ,𝑖 into 𝑟𝑔 and 𝜏𝑓 ,𝑔 is arbitrary. To ease the interpreta-
tion of frictions, we impose that 𝜏𝑓 ,𝑔𝜏𝑓 ,𝑔,𝑖 only distort the farm-level input demands
and do not affect the aggregate input demand 𝑋𝑎𝑔𝑔

𝑔 . This implies the following mar-
ket price of 𝑔:

𝑟𝑔 =
∑𝑖 𝜂𝛼𝑔,𝑖 ∑𝑓 (𝑝𝑖𝑦𝑓 ,𝑖)𝜂

𝑋𝑎𝑔𝑔
𝑔

(C.11)

Extending the logic, we impose that 𝜏𝑓 ,𝑔,𝑖 only distort the within-farm allocation
of inputs between crops and do not affect the farm-level input demand, implying the
following:

𝜏𝑓 ,𝑔,𝑖 =
𝜂𝛼𝑔,𝑖(𝑝𝑖𝑦𝑓 ,𝑖)𝜂

∑𝑗 𝜂𝛼𝑔,𝑗(𝑝𝑗𝑦𝑓 ,𝑗)𝜂
∑𝑗 𝑥𝑓 ,𝑔,𝑗

𝑥𝑓 ,𝑔,𝑖
(C.12)

Finally, the unobserved taste weights 𝜑𝑖 need to be consistent with the observed
allocation being in general equilibrium. To simplify notation, we map the price-
weighted outputs in the data to real output 𝑦𝑓 ,𝑖 in the model, implying that all prices
in the current model allocation are: {𝑝𝑖} = 1. Any such rescaling does not affect the
real behavior of the model, neither in the current allocation nor in the counterfactual
reallocations, since units of output in different products are arbitrary. This rescaling
simplifies extracting the taste weights consistent with the current allocation being in
general equilibrium to:

𝜑𝑖 = ⎛⎜
⎝

∑𝑓 𝑦𝑓 ,𝑖

∑𝑗 ∑𝑓 𝑦𝑓 ,𝑗
⎞⎟
⎠

1
𝜎

(C.13)

Note that this procedure makes extracting taste weights from estimated fixed effects
in Equation 16 unnecessary.

WHEN PRODUCT SETS ARE FIXED. Although the current allocation extracted from
thedata can be easilymade to be consistentwith the general equilibrium in themodel,
market-clearing prices have to be solved numerically for any counterfactual realloca-
tion. When product sets are fixed at the currently observed level, the problem of
finding market-clearing prices using Equations C.7-C.9 is simplified by the fact that
farmers cannot switch their product sets in response to changing prices.
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If at least land is being efficiently reallocated between farms (𝜆𝑓 is equalized be-
tween farms), the market-clearing prices can be solved without having to re-solve
each individual farm’s problem.22 This is the case in the benchmark reallocation ex-
ercise discussed in Section 6.1.

In this case, farms’ product sets 𝐼𝑓 are known from the current allocation. Since
land is being reallocated, 𝜆𝑓 = 𝜆̄ ∀𝑖. This allows the land market condition C.7, the
flexible input markets conditions C.8 and the input market identity C.10 to be solved
as a system with 𝐺 + 2 dimensions in 𝐺 + 2 unknowns: 𝜆̄, {𝑟𝑔}𝑔, and 𝑌𝑛𝑜𝑚. On each
guess of these variables, goods prices consistent with the guess can be computed
from C.9.

WHENPRODUCTSETS AREALLOWED TOCHANGE. When farms are allowed to change
their product set 𝐼𝑓 from its current level, the need to solve all individual farms’ prob-
lems on each price guess for new product sets can no longer be avoided.

By analogy with flexible inputs (Section 5.3), let each farm’s land shadow cost
deviation be fixed at 𝜆̂𝑓 = 𝜆𝑓 /𝜆̄.

The brute-force approach to solving for market-clearing prices is to solve condi-
tions C.7, C.8, C.9 as a system with 𝐺 + 𝑁 + 1 dimensions in the same number of
unknowns: 𝜆̄, {𝑥𝑔}𝑔, {𝑝𝑖}𝑖. Within each price guess:

1. Solve individual farms’ problems. For each farm:

(a) For each potential product set 𝐼𝑓 , find the land endowment 𝐿𝑓 consistent
with 𝜆𝑓 = 𝜆̄ ⋅ 𝜆̂ using Equation C.1.

(b) Solve the farm’s problem for the optimal product set 𝐼𝑓 , following Ap-
pendix C.1.

2. Evaluate conditions C.7, C.8, C.9.

The brute-force algorithm is guaranteed to find market-clearing prices but is ex-
ceptionally computationally costly due to its high-dimensionality and the need to
re-solve all farms’ problems on each price guess. However, there is a much faster
sequential heuristic algorithm:

1. Pick an initial guess of 𝜆̄, {𝑥𝑔}𝑔, {𝑝𝑖}𝑖.

22. This approach works whether or not any of the flexible input frictions 𝜏𝑓 ,𝑔, 𝜏𝑓 ,𝑔,𝑖 are being equal-
ized.
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2. Solve individual farms’ problems as in the brute-force algorithm.

3. Solve the system of market conditions as in the fixed crop set algorithm for new
price guesses: this assumes that product sets do not respond to changing prices.

4. Solve individual farms’ problems as in the brute-force algorithm with price
guesses obtained from the fixed crop set GE system.

5. Evaluate convergence in product sets. If all farms’ optimal product sets ob-
tained in step 4 are the same as in step 2, stop. If not, return to step 2.

This algorithm exploits the low-dimensionality and low computational cost of
solving for general equilibrium when product sets are fixed. By sequentially updat-
ing the farms’ product sets, this algorithm converges to the same answer as the brute-
force approach in just a few iterations.

D FIXED INPUT SHARES MODEL
An auxiliary model in which the relative allocation of inputs across crops within a
farm is fixed is useful for shutting down the effect of the endogenous product choice
mechanism (Section 6.3). In this model, the farmer can choose the overall quantity
of each input hired, but the share of the input 𝑔 allocated to each crop 𝑖 is fixed at
exogenously given 𝑠𝑓 ,𝑔,𝑖. The set of produced crops is likewise fixed at 𝐼𝑓 . The setup
of the model is otherwise similar to that in Section 5.1:

max
{𝑦𝑓 ,𝑖}𝑖

,𝐿𝑑
𝑓 ,{𝑋𝑓 ,𝑔}

𝑔

∑
𝑖∈𝐼𝑓

(𝑝𝑖𝑦𝑓 ,𝑖)
𝜂

−
𝐺

∑
𝑔=1

𝑟𝑔𝜏𝑓 ,𝑔 ∑
𝑖∈𝐼𝑓

𝜏𝑓 ,𝑔,𝑖𝑠𝑓 ,𝑔,𝑖𝑋𝑓 ,𝑔 (D.1)

s.t.
𝑦𝑓 ,𝑖 = 𝑧𝑓 ,𝑖 (𝑠𝑓 ,𝑙,𝑖𝐿𝑑

𝑓 )
𝛾𝑖

Π𝑔 [(𝑠𝑓 ,𝑔,𝑖𝑋𝑓 ,𝑔)
𝛼𝑔,𝑖] (D.2)

∑
𝑖∈𝐼𝑓

𝑠𝑓 ,𝑙,𝑖𝜏𝑓 ,𝑙,𝑖𝐿𝑑
𝑓 = 𝐿𝑠

𝑓 (𝜆𝑓 ) (D.3)




